Library Home


Mathematics - Pure

Read more about Intermediate Algebra

Intermediate Algebra

John Redden, College of the Sequoias


It is essential to lay a solid foundation in mathematics if a student is to be competitive in today's global market. The importance of algebra, in particular, cannot be overstated, as it is the basis of all mathematical modeling used in applications found in all disciplines.

(1 review)

Read more about Calculus for the Life Sciences: A Modeling Approach Volume 2

Calculus for the Life Sciences: A Modeling Approach Volume 2

James L. Cornette, Iowa State University

Ralph A. Ackerman

Our writing is based on three premises. First, life sciences students are motivated by and respond well to actual data related to real life sciences problems. Second, the ultimate goal of calculus in the life sciences primarily involves modeling living systems with difference and differential equations. Understanding the concepts of derivative and integral are crucial, but the ability to compute a large array of derivatives and integrals is of secondary importance. Third, the depth of calculus for life sciences students should be comparable to that of the traditional physics and engineering calculus course; else life sciences students will be short changed and their faculty will advise them to take the 'best' (engineering) course.

No ratings

(0 reviews)

Read more about Precalculus: An Investigation of Functions

Precalculus: An Investigation of Functions

David Lippman, Pierce College

Melonie Rasmussen, Pierce College

Precalculus: An Investigation of Functions is a free, open textbook covering a two-quarter pre-calculus sequence including trigonometry. The first portion of the book is an investigation of functions, exploring the graphical behavior of, interpretation of, and solutions to problems involving linear, polynomial, rational, exponential, and logarithmic functions. An emphasis is placed on modeling and interpretation, as well as the important characteristics needed in calculus.

(6 reviews)

Read more about Vector Calculus

Vector Calculus

Michael Corral, Schoolcraft College

This is a text on elementary multivariable calculus, designed for students who have completed courses in single-variable calculus. The traditional topics are covered: basic vector algebra; lines, planes and surfaces; vector-valued functions; functions of 2 or 3 variables; partial derivatives; optimization; multiple integrals; line and surface integrals.

No ratings

(0 reviews)

Read more about Calculus for the Life Sciences: A Modeling Approach Volume 1

Calculus for the Life Sciences: A Modeling Approach Volume 1

James L. Cornette, Iowa State University

Ralph A. Ackerman, Iowa State University

Our writing is based on three premises. First, life sciences students are motivated by and respond well to actual data related to real life sciences problems. Second, the ultimate goal of calculus in the life sciences primarily involves modeling living systems with difference and differential equations. Understanding the concepts of derivative and integral are crucial, but the ability to compute a large array of derivatives and integrals is of secondary importance. Third, the depth of calculus for life sciences students should be comparable to that of the traditional physics and engineering calculus course; else life sciences students will be short changed and their faculty will advise them to take the 'best' (engineering) course.

No ratings

(0 reviews)

Read more about Whitman Calculus

Whitman Calculus

David Guichard, Whitman College

An introductory level single variable calculus book, covering standard topics in differential and integral calculus, and infinite series. Late transcendentals and multivariable versions are also available.

(6 reviews)

Read more about College Trigonometry

College Trigonometry

Carl Stitz, Lakeland Community College

Jeff Zeager, Lorain County Community College

Covers chapters 10-11 of Precalculus.

(1 review)

Read more about Precalculus

Precalculus

Carl Stitz, Lakeland Community College

Jeff Zeager, Lorain County Community College

A casual glance through the Table of Contents of most of the major publishers' College Algebra books reveals nearly isomorphic content in both order and depth. Our Table of Contents shows a different approach, one that might be labeled “Functions First.” To truly use The Rule of Four, that is, in order to discuss each new concept algebraically, graphically, numerically and verbally, it seems completely obvious to us that one would need to introduce functions first. (Take a moment and compare our ordering to the classic “equations first, then the Cartesian Plane and THEN functions” approach seen in most of the major players.) We then introduce a class of functions and discuss the equations, inequalities (with a heavy emphasis on sign diagrams) and applications which involve functions in that class.

(1 review)

Read more about Linear Algebra

Linear Algebra

Jim Hefferon, Saint Michael's College

This text covers the standard material for a US undergraduate first course: linear systems and Gauss's Method, vector spaces, linear maps and matrices, determinants, and eigenvectors and eigenvalues, as well as additional topics such as introductions to various applications. It has extensive exercise sets with worked answers to all exercises, including proofs, beamer slides for classroom use, and a lab manual for computer work. The approach is developmental. Although everything is proved, it introduces the material with a great deal of motivation, many computational examples, and exercises that range from routine verifications to a few challenges.

(4 reviews)

Read more about A First Course in Linear Algebra

A First Course in Linear Algebra

Robert A. Beezer, University of Puget Sound

A First Course in Linear Algebra is an introductory textbook aimed at college-level sophomores and juniors. Typically students will have taken calculus, but it is not a prerequisite. The book begins with systems of linear equations, then covers matrix algebra, before taking up finite-dimensional vector spaces in full generality. The final chapter covers matrix representations of linear transformations, through diagonalization, change of basis and Jordan canonical form. Determinants and eigenvalues are covered along the way.

(11 reviews)