# Mathematics Textbooks

## Notes on Diffy Qs: Differential Equations for Engineers

Contributor: Lebl

Publisher: Jirí Lebl

A one semester first course on differential equations, aimed at engineering students. Prerequisite for the course is the basic calculus sequence. This free online book (e-book in webspeak) should be usable as a stand-alone textbook or as a companion to a course using another book such as Edwards and Penney, Differential Equations and Boundary Value Problems: Computing and Modeling or Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems (section correspondence to these two is given). I developed and used these notes to teach Math 286/285 at the University of Illinois at Urbana-Champaign Sample Dirichlet problem solution (one is a 4-day-a-week, the other a 3-day-a-week semester-long course). I have also taught Math 20D at University of California, San Diego with these notes (a 3-day-a-week quarter-long course). There is enough material to run a 2-quarter course, and even perhaps a two semester course depending on lecturer speed.

(5 reviews)

## A First Course in Linear Algebra

Contributor: Kuttler

Publisher: Lyryx

This text, originally by K. Kuttler, has been redesigned by the Lyryx editorial team as a first course in linear algebra for science and engineering students who have an understanding of basic algebra.

(8 reviews)

## Abstract Algebra: Theory and Applications

Contributor: Judson

Publisher: University of Puget Sound

This text is intended for a one- or two-semester undergraduate course in abstract algebra. Traditionally, these courses have covered the theoretical aspects of groups, rings, and fields. However, with the development of computing in the last several decades, applications that involve abstract algebra and discrete mathematics have become increasingly important, and many science, engineering, and computer science students are now electing to minor in mathematics. Though theory still occupies a central role in the subject of abstract algebra and no student should go through such a course without a good notion of what a proof is, the importance of applications such as coding theory and cryptography has grown significantly.

(4 reviews)

## Calculus One

Contributors: Holowinsky, Thiel, and Lindberg

Publisher: Mooculus

Calculus is about the very large, the very small, and how things change—the surprise is that something seemingly so abstract ends up explaining the real world.

(1 review)

## Mathematical Reasoning: Writing and Proof, Version 2.1

Contributor: Sundstrom

Publisher: Grand Valley State University

Mathematical Reasoning: Writing and Proofis designed to be a text for the ?rst course in the college mathematics curriculum that introduces students to the processes of constructing and writing proofs and focuses on the formal development of mathematics. The primary goals of the text are to help students:

(4 reviews)

## Introductory Statistics

Contributors: Illowsky, Dean, and Chiappetta

Publisher: OpenStax

Introductory Statistics follows the scope and sequence of a one-semester, introduction to statistics course and is geared toward students majoring in fields other than math or engineering. This text assumes students have been exposed to intermediate algebra, and it focuses on the applications of statistical knowledge rather than the theory behind it. The foundation of this textbook is Collaborative Statistics, by Barbara Illowsky and Susan Dean, which has been widely adopted. Introductory Statistics includes innovations in art, terminology, and practical applications, all with a goal of increasing relevance and accessibility for students. We strove to make the discipline meaningful and memorable, so that students can draw a working knowledge from it that will enrich their future studies and help them make sense of the world around them. The text also includes Collaborative Exercises, integration with TI-83,83+,84+ Calculators, technology integration problems, and statistics labs.

(23 reviews)

## Precalculus

Contributors: Abramson, Falduto, and Grosss

Publisher: OpenStax

Precalculus is intended for college-level precalculus students. Since precalculus courses vary from one institution to the next, we have attempted to meet the needs of as broad an audience as possible, including all of the content that might be covered in any particular course. The result is a comprehensive book that covers more ground than an instructor could likely cover in a typical one- or two-semester course; but instructors should find, almost without fail, that the topics they wish to include in their syllabus are covered in the text. Many chapters of Openstax College Precalculus are suitable for other freshman and sophomore math courses such as College Algebra and Trigonometry; however, instructors of those courses might need to supplement or adjust the material. Openstax will also be releasing College Algebra and Algebra and Trigonometry titles tailored to the particular scope, sequence, and pedagogy of those courses.

(5 reviews)

## APEX Calculus

Contributors: Hartman, Heinold, Siemers, Chalishajar, and Bowen

Publisher: APEX Calculus

This text comprises a three–text series on Calculus. The first part covers material taught in many “Calc 1” courses: limits, derivatives, and the basics of integration, found in Chapters 1 through 6.1. The second text covers material often taught in “Calc 2:” integration and its applications, along with an introduction to sequences, series and Taylor Polynomials, found in Chapters 5 through 8. The third text covers topics common in “Calc 3” or “multivariable calc:” parametric equations, polar coordinates, vector–valued functions, and functions of more than one variable, found in Chapters 9 through 14. More information, including free downloads of .pdf versions of the text, is available at www.apexcalculus.com.

(5 reviews)

## How We Got from There to Here: A Story of Real Analysis

Contributors: Rogers and Boman

Publisher: Open SUNY

The typical introductory real analysis text starts with an analysis of the real number system and uses this to develop the definition of a limit, which is then used as a foundation for the definitions encountered thereafter. While this is certainly a reasonable approach from a logical point of view, it is not how the subject evolved, nor is it necessarily the best way to introduce students to the rigorous but highly non-intuitive definitions and proofs found in analysis.

(2 reviews)

## Elementary Differential Equations with Boundary Value Problems

Contributor: Trench

Publisher: A.T. Still University

Elementary Differential Equations with Boundary Value Problems is written for students in science, engineering, and mathematics who have completed calculus through partial differentiation.

(9 reviews)