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Proposal

I would like to propose a new introductory statistical inference text-
book, which I believe takes a fresh look at a course that fits into
nearly every quantitative major at universities.

Initial Motivation

My motivation for this project stems from my dissatisfaction with tra-
ditional approaches to the topic, and my belief that there is a better
way. A first semester statistics course is generally divided into the
following four parts:

I Basic Statistical Concepts

• Basic statistical concepts including population, parameter, sam-
ple, and statistic

• Types of data (ordinal, time-series, etc...), and sampling method-
ology

• Organizing the data visually or graphically - including his-
tograms, pie graphs, box plots, and stem-and-leaf plots

• Statistical computations including mean, median, mode, stan-
dard deviation, and percentiles

II Probability

• Properties of unions, intersections, conditional probability,
independence and mutual exclusivity

• Permutations and combinations

• Discrete distributions

• Continuous distributions

• Normal distribution

III One-sample Statistics

• Confidence intervals
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• Sampling distributions

• Computations involving the normal distribution, t-distribution,
and binomial distribution (for proportions)

• Hypothesis testing

IV Two-sample Statistics

• Two sample problems - expanding topics from Part III to two
variables

Obviously, there is some variability to these topics, but as one can
see from most introductory statistics textbooks, there is a consistent
approach. My main concerns about the traditional approach can be
summarized as follows:

1 Part II (probability) generally covers at least one quarter of the ma-
terial in an introductory statistics course. There is a shift from data
collection and analysis (Part I) to probability theory. Subsequently,
Part III shifts back to a data centered approach and only a small
portion of Part II generally applies in Part III. This disconnect be-
tween Parts I, II, and III, impedes the learning process. It seems to
the students as if the parts are related somehow, but the connec-
tion is rarely made. The students are then left with a feeling that
the course concerns two completely unrelated topics: probability
and statistics.

2 The normal distribution is covered repetitively throughout many
chapters of most introductory statistics books. The coverage is
included in sections such as: empirical bell-shaped curve (Part
I), normal distribution as a type of continuous distribution (Part
II), sampling distributions (Part III), interval estimation (Part III),
hypothesis testing (Part III), and two population testing (Part
IV). There is redundant focus on the normal and t-distributions.
These topics are closely related, but not handled cohesively. More
importantly, there is little or no discussion of the assumptions of
the normal model or how to tell what constitutes “close enough”
to normal. In addition, there is generally equal consideration given
to the rare practical situation in which the standard deviation is
known (and knowing this does not generally alter the result much
at all).

3 After the concept of a “statistic” is covered, there are many chap-
ters which repeat essentially the same problem multiple times,
from only slightly different perspectives. This gives the student a
feeling that these are all very different problems, despite the ap-
pearances, and leads the student to approach solving problems
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like a “cookbook”: just find the right recipe for the right problem.
The fundamental understanding of statistical inference is under-
mined by this approach.

It is my view that the traditional approach detracts from student
understanding, with its “cookbook” perspective, disjointed cover-
age of probability, and the almost exclusionary focus on the normal
distribution.

A New Approach

In the field of statistical inference, there are two primary schools of
thought. Each has its proponents, but it is generally accepted that on
all problems covered in an introductory course, that both approaches
are valid and lead to the same numerical values when applied to
actual problems. Only one of these approaches is covered in a tra-
ditional course, which denies the students access to an entire field
of statistical inference. The traditional approach, also called the fre-
quentist or orthodox perspective, leads almost directly to problem (1)
above. The other approach, also called Probability Theory as Logic1, 1 E. T. Jaynes. Probability Theory:

The Logic of Science. Cambridge
University Press, Cambridge, 2003.
Edited by G. Larry Bretthorst

derives all statistical inference from probability theory directly. It is
this approach that I hope to expose students to in an introductory
course.

The probability theory approach to statistical inference has several
benefits:

1 All of the same problems as handled traditionally can be handled
with this perspective, yielding exactly the same answers2. 2 One reason why “Probability

theory as Logic” concepts are
covered only in advanced courses
is the misperception that they are
applicable only to more advanced
problems, and not applicable to
problems normally found in an
introductory class. The fact that
this misperception exists is a strong
argument for a book like this one,
to dispel this misperception and to
communicate both to students and
instructors alike the value of a this
approach to basic problems.

2 Statistical inference is theoretically grounded in probability theory,
which, although admittedly beyond an introductory course, avoids
the “cookbook” approach, where different problems need different
methods, that students take away from the traditional textbooks.
Here all problems use the same method, derived from probability
theory.

3 The reasoning process using the probability theory perspective
is more intuitive than the orthodox perspective, especially when
dealing with hypothesis testing.

For example, every statistics instructor faces the challenge of
getting students to interpret p-values properly, and the logic be-
hind setting up null-hypotheses. They have to combat the stu-
dents’ initial intuition that the p-value represents the “probability
that the null is true,” and many students never really obtain the
proper understanding. I have even heard instructors use it this
way.
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In the Probability Theory as Logic perspective, this same calcu-
lated value is interpreted exactly like the students’ initial intuition!
Thus, testing hypotheses, estimating parameters, and determining
uncertainties are far more direct and intuitive using this approach
than the traditional approach.

What I Am Proposing

This text can help solve the challenges described above, and more.
By focusing on models and data, as opposed to populations and
samples, this text can more cohesively bridge the topics described in
Parts I, II, and III above. Probability will be introduced as a natural
part of solving problems, as opposed to its standalone treatment
traditionally done in today’s texts.

In this text, I will use the Probability Theory as Logic approach
applied to the same problems that are traditionally covered. This
viewpoint can greatly enhance our understanding of statistics and
can handle topics such as confidence intervals and hypothesis testing
in a very intuitive manner. Statistical inference covered in this way
also addresses real-life questions that are not addressed by traditional
statistical methods.3 3 One of the reasons why this ap-

proach is usually covered only in
more advanced courses is the diffi-
culty of the mathematics generally
associated with it. Orthodox statis-
tics makes heavy use of sampling,
which is deemed more intuitive
than probability distributions. It
is my intention to start with low-
dimensional cases, building to
distributions, and to augment all
concepts with numerical exercises.

Finally, this will be a problem oriented textbook. It is imperative
that the problems are cohesive with the pedagogy. I will also plan to
use technology, where appropriate, to further student learning and
make the textbook more interactive.

At the level targeted for this book, there is only one textbook that
I know of that covers inference from the perspective proposed here,
and that is Donald Berry’s book Statistics: A Bayesian Perspective,
1996. It is my intention to modernize the approach, and include some
topics that are not covered, specifically from the physical sciences
and business.



1 Introduction to Probability

Life’s most important questions are, for the most part, nothing but probability
problems. - Laplace

In 1968 a jury found defendant Malcolm Ricardo Collins and his
wife defendant Janet Louise Collins guilty of second degree robbery1. 1 J. Sullivan. People v. Collins ,

68 cal.2d 319, 1968. URL http:

//scocal.stanford.edu/opinion/

people-v-collins-22583

The decision hinged on the testimony of bystanders, which stated
that the perpetrators had been “black male, with a beard and mous-
tache, and a caucasian female with blonde hair tied in a ponytail,”
and that they escaped in a “yellow motor car.” A mathematician
testified that the odds against this couple being innocent were one
in twelve million, and this was enough for the jury to convict. Later,
in an appeal, the California Supreme Court reversed the decision
primarily because of lack of evidence, and faulty inference.

In another case, Sally Clark was convicted in 1999 of the murder
of her two young sons2. Again, the testimony hinged on a statistical 2 Lord Justice Kay. R vs Sally

Clark, April 2003. URL http:

//www.bailii.org/ew/cases/EWCA/

Crim/2003/1020.html

argument - the chances of one baby dying in their bed 1 in 8500, so
therefore the chances of two of them dying in the same way is the
square of this, or 1 in 73 million. Several years later, and a public
statement from the Royal Statistical Society highlighting the erro-
neous logic, Sally Clark was released - although she never overcame
the resulting damage to her life that the conviction had caused.

We will cover these cases in more detail later, and why the in-
ference was faulty, but I introduce the stories here for two reasons.
First, is to point out that there are cases in which proper statistical
inference can be a life and death matter. Second, it is to highlight the
fact that such inference can run counter to one’s intuition. Part of the
purpose of this book is to retrain your intuitions and your habits of
intuition to avoid such failures.

We have to make decisions nearly every second of our lives, and
those decisions are based on our state of knowledge. Unfortunately,
we are never 100% sure of any information in our lives, so we are
constantly forced to make decisions in the face of uncertainty. In
many cases our common sense is enough to make sophisticated deci-
sions, taking into account the uncertain nature of the situation. How-
ever, there are many times where our common sense is not enough to

http://scocal.stanford.edu/opinion/people-v-collins-22583
http://scocal.stanford.edu/opinion/people-v-collins-22583
http://scocal.stanford.edu/opinion/people-v-collins-22583
http://www.bailii.org/ew/cases/EWCA/Crim/2003/1020.html
http://www.bailii.org/ew/cases/EWCA/Crim/2003/1020.html
http://www.bailii.org/ew/cases/EWCA/Crim/2003/1020.html
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quantitatively resolve the level of uncertainty, and make valid infer-
ences. It is in these cases that statistical inference is most useful.

Statistical inference refers to a field of study where we try to infer
unknown properties of the world, given our observed data, in the
face of uncertainty. It is a mathematical framework to quantify what
our common sense says in many situations, but allows us to exceed
our common sense in cases where common sense is not enough. Ig-
norance of proper statistical inference leads to poor decisions and
wasted money. As with ignorance in any other field, ignorance of sta-
tistical inference can also allow others to manipulate you, convincing
you of the truth of something that is false.

For example, in 1978 a Russian satellite deviated from its orbit and
became increasingly erratic, and was going to crash into the Earth.3 3 L Heaps. Operation morning

light. Paddington, S.l, 1978. ISBN
0709203233

This sort of event occurs from time to time, even including a recent
crash of a US spy satellite in 2008.4 There was a local news broadcast 4 James Oberg. U.S. satellite shoot-

down: The inside story. IEEE
Spectrum, 2008

about the impending Russian satellite crash which said something
like, “the scientists had studied the trajectory of the satellite, and
determined that there was only a 25% chance of it striking land, and
even a much smaller chance striking a populated area.” The report
was clearly designed to calm the public, and convince them that
the scientists had a good handle on the situation. Unfortunately,
given a little thought, one realizes that the Earth’s surface consists
of about 25% land and 75% water, so if you knew nothing about the
trajectory of the satellite, you would simply state that it had a 25%
chance of striking land. Instead of communicating knowledge of the
situation, the news broadcast communicated (to those who knew
basic statistical inference) that either the scientists were in complete
ignorance of the trajectory or the reporter had misinterpreted a casual
statement about probabilities and didn’t realize what was implied.
Either way, the intent of the message and the content of the message
(to those who understood basic probability) were in direct conflict.

1.1 Models and Data

There are two main aspects of statistical inference: description of
data and model analysis. In the description of data, one attempts to
summarize a set of data with a smaller set of numbers. Grades in
the classroom are summarized by the average, votes in a state are
summarized by a percentage, etc... This smaller description of the
data is useful for both practical and theoretical reasons. It is more
expedient to communicate a small set of numbers than the entire data
set, and it is almost always the case that the detailed properties of a
set of data are not relevant to the questions that you are asking.

A model refers to a mathematical structure which is used to ap-
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proximate the underlying causes of the data, and unify seemingly
unrelated problems. One may have a (mathematical) model for a
coin flip which ignores all of the details of the flip, the bounce, and
the catch and summarizes the possible results by a single number:
the chance that the coin will come up heads. You may then use that
same model to describe the voting behavior of citizens during a pres-
idential election, or to describe the radioactive decay of particles in a
physics experiment. The mathematics is identical, but the interpreta-
tion of the components of the model will be different depending on
the problem. Models simplify, by summarizing data with a small set
of causes, and they are used for inference, allowing one to predict the
outcome of subsequent events.

The goal of statistical inference is then to take data, and update
our knowledge about various possible models that can describe the
data. This often means deciding which of several models is the most
likely. It can also entail the refinement of a single model, given the
new data. All of these activities are closely related to (and perhaps
identical to) the methods in science. What we are trying to do is
make the best inferences from the data, improve our inferences as
new data come in, and plan what data would be the most useful to
improve our inferences. In a nutshell, the approach is:

Initial Inference + New Data→ Improved Inference

In order to deal with a wide variety of problems, we require a
minimal amount of mathematical structure and notation, which we
introduce in this chapter.

1.2 What is Probability?

Probability theory is nothing but common sense reduced to calculation. -
Laplace

When you think about probability, the first things that might come
to mind are coin flips (“there’s a 50-50 chance of landing heads”),
weather reports (“there’s a 20% chance of rain today”), and politi-
cal polls (“the incumbent candidate is leading the challenger 53% to
47%”). When we speak about probability, we speak about a percent-
age chance (0%-100%) for something to happen, although we often
write the percentage as a decimal number, between 0 and 1. If the
probability of an event is 0 then it is the same as saying that you are
certain that the event will never happen. If the probability is 1 then you
are certain that it will happen. Life is full of uncertainty, so we assign a
number somewhere between 0 and 1 to describe our state of knowl-
edge of the certainty of an event. The probability that you will get
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struck by lightning sometime in your life is p = 0.0002, or 1 out of
5000. Statistical inference is simply the inference in the presence of
uncertainty. We try to make the best decisions we can, given incom-
plete information. In this book, our approach is to

determine, for each problem, what
degree of confidence we have in
all of the possible outcomes. The
approach of statistical inference
covered in this book is about the
procedure of most rationally assign-
ing various degrees of confidence
(which we call probability) to the
possible outcomes of some process
using all the objectively available
data.

One can think of probability as a mathematical short-hand for the
common sense statements we make in the presence of uncertainty.
This short-hand, however, becomes a very powerful tool when our
common sense is not up to the task of handling the complexity of a
problem. Thus, we will start with examples that will perhaps seem
simple and obvious, and move to examples where it would be a
challenge for you to determine the answer without the power of
statistical inference.

Let’s walk through a simple set of examples to establish the nota-
tion, and some of the basic mathematical properties of probabilities.

Card Game

A simple game can be used to explore all of the facets of probability.
We use a standard set of cards (Figure 1.1) as the starting point, and
use this system to set up the intuition, as well as the mathematical
notation and structure for approaching probability problems.

Figure 1.1: Standard 52-card deck.
13 cards of each suit, labeled
Spades, Clubs, Diamonds, Hearts.

We start with what I simply call the simple card game5, which goes 5 In this description of the game,
we do not reshuffle after each draw.
The differences between this non-
reshuffled version and the one with
reshuffling will be explored later,
but will only change some small
details in the outcomes.
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like:

simple card game ≡



From a standard initially shuffled
deck, we draw one card, note what
card it is and set it aside. We then
draw another card, note what card
it is and set it aside. Continue until
there are no more cards, noting each
one along the way.

(1.1)

There are certain principles that guide us in developing the math-
ematical structure of probability. We start with some common sense
notions, written in English, and then write them as general princi-
ples. These principles, then, constrain our mathematics so that we
can apply the ideas quantitatively.

When asked “what is the probability of drawing a red on the
first draw?” you would generally say 50-50, or 50%, or equivalently
written as a probability, P(R1) = 0.5. The reason for this is that
we are completely ignorant of the initial conditions of the deck (i.e.
where each card is located in the deck after the initial shuffling).
Given this level of (or lack of) knowledge, we could swap the colors
of the two suits and we would have an equivalent state of knowledge
- the problem would be identical. We will keep coming back to this
concept, but in general:

Principle of Knowledge and Probability Equivalent states of Principle of Knowledge and
Probability Equivalent states of
knowledge must yield equivalent
probability assignments.

knowledge must yield equivalent probability assignments.
Because of this principle, we are led to the conclusion that

P(R1) = P(B1)

where R1 represents the statement “a red on the first draw” and B1

represents “a black on the first draw.” Because these are the only two
options, and they are mutually exclusive, then they must add up to 1.
Thus we have

P(R1) = 1− P(B1)

which leads directly to our original assignment

P(R1) = P(B1) = 0.5

Mutually Exclusive If I have a list of mutually exclusive events, then Mutually Exclusive If I have a
list of mutually exclusive events,
then that means that only one
of them could possibly be true.
Examples includes the heads
and tails outcomes of coins, or
the values of standard 6-sided
dice. In terms of probability, this
means that, for events A and B,
P(A and B) = 0.

that means that only one of them could possibly be true. Example
events include flipping heads or tails with a coins, rolling a 1, 2,
3, 4, 5 or 6 on dice, or drawing a red or black card from a deck of
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cards. In terms of probability, this means that, for events A and B,
P(A and B) = 0.

Non Mutually Exclusive If I have a list of events that are not mutu- Non Mutually Exclusive If I have
a list of events that are not mutually
exclusive, then it is possible for
two or more to be true. Examples
include weather with rain and
clouds or holding the high and the
low card in a poker game.

ally exclusive, then it is possible for two or more to be true. Examples
include weather with rain and clouds or holding the high and the
low card in a poker game.

Now, this was a long-winded way to get to the answer we knew
from the start, but that is how it must begin. We start working things
out where our common sense is strong, so that we know we are
proceeding correctly. We can then, confidently, apply the tools in
places where our common sense is not strong.

In summary, with no more information than that there are two
mutually exclusive possibilities, we assign equal probability to both.
If there are only two colors of cards in equal amounts, red and black,
then the probability of drawing a red is P(R1) = 0.5 and the probabil-
ity for a black is the same, P(B1) = 0.5.

Other Observations

If instead of just the color, we were interested in the suit (hearts,
diamonds, spades, and clubs), then there would be four equal and
mutually exclusive possibilities. We have a certain number of possi-
bilities, and our state of knowledge is exactly the same if we simply
swap around the labels on the cards. If we’re interested in the specific
card, not just the suit, the logic is the same. Thus, we have

P(♠) = P(♣) = P(♦) = P(♥)

and for drawing one specific card from the deck,

P(A♠) = P(2♠) = P(3♠) = · · · = P(K♥)

Further, they all must add up to 1, so we get for suits

P(♠) + P(♣) + P(♦) + P(♥) = 1

and for the specific card from the deck,

P(A♠) + P(2♠) + P(3♠) + · · ·+ P(K♥)︸ ︷︷ ︸
52 cards

= 1

Putting it together, we get for the suits

P(♠) = P(♣) = P(♦) = P(♥) =
1
4
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and for the specific card

P(A♠) = P(2♠) = P(3♠) = · · · = P(K♥) =
1
52

Probabilities for Mutually Exclusive Events In general, for mutu- Probabilities for Mutually Exclu-
sive Events

P(A) =
(number of cases favorable to A)

(total number of equally possible cases)

ally exclusive events, we have

P(A) =
(number of cases favorable to A)

(total number of equally possible cases)
(1.2)

1.3 Conditional Probability

It is important to understand that probability reflects our state of
knowledge about the system. As our knowledge changes, so do our
probability assignments. As we gain more information, we change
our probability assignments. Two people observing the same system,
but with different information about the system, will give different
probability assignments. All we need to make sure probability theory
matches our common sense is for two people with the same state of
knowledge, or the same information, to yield identical probability
assignments.

Because our information about a system is so important in assign-
ing probabilities, we introduce a way of writing it mathematically
that we will use for the rest of the book. It will be good for the reader
to get used to reading the mathematical short-hand in English in
order to gain an understanding for what it means.

Probability Notation

In math, we choose to abbreviate long sentences in English, in order
to use the economy of symbols. In this book we choose a middle-
ground between mathematical succinctness and the ease of under-
standing English. We start with the simple card game (Equation 1.1)

We then define a new symbol, |, which should be read as “given.”
When there is information given we call this probability conditional
on that information. When we write the following:

P(red on first draw|simple card game) (1.3)

or

P(R1|simple card game) (1.4)

this is short for
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“The probability of drawing a red on the first draw, given that we have a
standard initially shuffled deck and we follow the procedure where we draw
one card, note what color it is and set it aside and continue drawing, noting,
and setting aside until there are no more cards.”

One can easily see that the mathematical notation is far more
efficient. It is important to be able to read the notation, because it
describes what we know and what we want to know.

Conditional Probability When information is given, and ex- Conditional Probability When
information is given, and expressed
on the right-hand side of the |
sign, we say that the probability
is conditional. P(I’m going to get
wet today|raining outside) is an
assessment of how likely it is that
I will get wet given, or conditional
on, the fact that it is raining outside.
Clearly this number will be differ-
ent if it was conditional on the fact
that it is sunny outside.

pressed on the right-hand side of the | sign, we say that the proba-
bility is conditional. P (I’m going to get wet today|raining outside) is
an assessment of how likely it is that I will get wet given, or condi-
tional on, the fact that it is raining outside. Clearly this number will
be different if it was conditional on the fact that it is sunny outside -
different states of knowledge yield different probability assignments.

Causation. Imagine we have a 2-card
game: a small deck with one red
card and one black card, and I draw
a red card first. Clearly this makes
the probability of drawing red as
the second card equal to zero - it
can’t happen. We’re tempted to
interpret

P(R2|R1, 2-card game) = 0

to mean that because we drew a red
on the first draw, this causes the
impossibility of drawing the red on the
second - there is only 1 red card after
all, and drawing it seems to cause
the impossibility of drawing red in
the future. However, consider the
following:

P(R1|R2, 2-card game) = 0

which is, if we knew that the second
card we drew was red, then it
makes it impossible to have drawn
a red card as the first card. This is
just as true as the previous case,
however, you can’t interpret this as
causation - the second draw didn’t
cause the first draw.

Instead, probability statements are
statements of logic, not causation. One
can use probabilities to describe
causation (i.e. P (rain|clouds)), but
the statements of probability have
no time component - later draws
from the deck of cards act exactly
the same as earlier ones.

When we put a comma (“,”) on the right side then we read this as
“and we know that.” For example, when we write the following:

P(red on second draw|simple card game,red on first draw) (1.5)

or

P(R2|simple card game, R1) (1.6)

this is short for

“The probability of drawing a red on the second draw, given that we have a
standard initially shuffled deck and we follow the procedure where we draw
one card, note what color it is and set it aside and continue drawing, noting,
and setting aside until there are no more cards and we know that we drew a
red on the first draw.”

1.4 Rules of Probability

From the rule for mutually exclusive events (Equation 1.2), we assign
the following probabilities for the first draw from this deck6:

6 A face card is defined to be a Jack,
Queen, or King. A number card is
defined to be Ace (i.e. 1) through
10.

• P(10) = 4
52

• P(♥) = 13
52 = 1

4

• P(10♥) = 1
52

• P(face card) = 12
52

• P(number card) = 40
52
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It turns out that mathematically, the rules for fractions of things
and of probabilities are the same. Thus, to gain an understanding
for the rules of probability, we will calculate fractions (which are
more immediately intuitive), and then summarize the same rule for
probabilities.

Negation Rule

In this section I’ll use the letter F for fraction, and we can determine
the values simply by counting. The fraction of cards which are hearts
(♥) is Either-or fallacy. The negation

rule, should not be taken to imply
that everything is “black and
white,” or “there are only two
sides to every story.” It really is
just a statement of logic, should
be carefully considered and has
some limitations. For example, the
following is true,

P (object is black) + P (object is not black) = 1

However, this does not mean the
same thing as

P (object is black) + P (object is white) 6= 1

“Not black” is not the equivalent of
“white.” It could be red, or gray, or
some other color. A common logical
fallacy sometimes referred to as the
“either-or fallacy” or the “fallacy
of the excluded middle,” turns on
this point. Some examples of these
fallacies are:

• If we don’t reduce public spend-
ing, our economy will collapse.

• You’re either with us or you’re a
terrorist.

• Either modern medicine can
explain how Ms. X was cured, or
it is a miracle.

F(♥) =
13
52

=
1
4

The fraction of cards which are not hearts (i.e. the 3 other suits) is:

F(not ♥) =
13× 3

52
=

3
4

These numbers add up to one: F(♥) + F(not ♥) = 1. We can do this
with more complex statements.

F (first card is a face card) =
12
52

F (first card is not a face card) =
40
52

F (first card is a face card) + F (first card is not a face card) = 1

Example 1.1 What is the fraction of the first card as a jack given that we
know that the first card is a face card?

We can also apply the negation rule to conditional statements, like
“the first card is a jack given that we know that the first card is a face
card.” Notice that there are 12 cards that are face cards, so we restrict
our counts to those.

F (jack|face card) =
4
12

= 1/3

F (not a jack|face card) =
8
12

= 2/3

F (jack|face card) + F (not a jack|face card) = 1

and they add up to one.

Negation Rule Given any information, we have Negation Rule

P(A|B) + P(not A|B) = 1P(statement|information) + P(not statement|information) = 1

or

P(A|B) + P(not A|B) = 1 (1.7)
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Product Rule

The product rule comes from looking at the combination of events:
event A and event B. As before, we’ll work on the numbers from the
fractions of the card game.

Example 1.2 What is the fraction of cards that are Jacks and a heart?

This is clearly F (J♥) = 1/52, but we can look at it a different way
that is equivalent. We note that the Jacks constitute 4/52 of the cards,
and that of those 4, only one quarter of them are hearts (one card out
of the four cards). So, we can arrive at the fraction of J♥ by taking
one quarter of the fraction of jacks. So what we have is

F (jack and ♥) = F (♥|jack)× F (jack) =
1
4
× 4

52
=

1
52

One can equivalently reason from the suit first: the hearts constitute
13/52 of the cards, and that of those 13, the Jacks constitute 1/13

of the cards. So, we can arrive at the fraction of J♥ by taking one
thirteenth of the fraction of ♥. Again, we have

F (jack and ♥) = F (jack|♥)× F (♥) =
1
13
× 13

52
=

1
52

In general we have
Product Rule Product Rule

P(A and B) = P(A|B)P(B)

= P(B|A)P(A)
P(A and B) = P(A|B)P(B) = P(B|A)P(A) (1.8)

Example 1.3 What is the probability of drawing two Kings in a row?

This is the same as

P(K2 and K1)

From the product rule (Equation 1.8) we have

P(K2 and K1) = P(K2|K1)P(K1)

The second part is straight forward: P(K1) = 4/52. The first part is
asking the probability of drawing a second king, knowing that we
have drawn a king on the first draw. Now, there are only 51 cards
remaining when we do the second draw, and only 3 kings. Thus, we
have P(K2|K1) = 3/51 and finally

P(K2 and K1) = P(K2|K1)P(K1)

=
3
51
× 4

52
=

1
221
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Independence

As a specific case of the product rule, we can change the rule of the
card games such that we reshuffle the deck after each draw. In this
way, the result of one draw gives you no information about other
draws. In this case, the events are considered independent.

Independent Events Two events, A and B, are said to be inde- Independent Events Two events,
A and B, are said to be indepen-
dent if knowledge of one gives
you no information on the other.
Mathematically, this means

P(A|B) = P(A)

and

P(B|A) = P(B)

pendent if knowledge of one gives you no information on the other.
Mathematically, this means

P(A|B) = P(A)

and

P(B|A) = P(B)

In this case, the product rule reduces to the simplified rule for
independent events: the product of the individual event probabilities.

Joint Probabilities for Independent Events Joint Probabilities for Independent
Events

P (A and B) = P(A)× P(B)P (A and B) = P(A)× P(B) (1.9)

We have already seen an example of this, when we looked at
drawing the Jack of Hearts: drawing a heart gives you no informa-
tion about whether it is a jack, and vice versa. Thus,

P (♥|jack) = P (♥)

Example 1.4 What is the probability of flipping two heads in a row?

The probability of getting “heads” on any given coin flip is P(H) =

0.5. The probability of flipping two heads in a row is then simply
P(H1) × P(H2) = 0.5 × 0.5 = 0.25, because the second flip is in-
dependent of the first. If it wasn’t, then you’d have to determine
how the knowledge of the first flip influences our knowledge of the
second flip, which is written as P(H2|H1) and the full product rule
(Equation 1.8) would need to be used.

Conjunction

One of the consequences of combinations of events is that the prob-
ability of two events happening, A and B, has to be less than (or
possibly equal to) the probability of just one of them, say A, happen-
ing. The mathematical fact is seen by looking at the magnitude of the
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terms in the product rule

P (A and B) = P(B|A)︸ ︷︷ ︸
less
than or
equal to
1

×P(A) ≤ P(A)

In other words, coincidences are less likely than either event hap-
pening individually. We intuitively know this, when we make com-
ments like “Wow! What are the chances of that?” referring to, say,
someone winning the lottery and then getting struck by a car the
next day. Sometimes, however, it seems as if one’s intuition does not
match the conclusions of the rules of probability. One such case is
called the conjunction fallacy. Combinations of Events and the

English language I believe that the
issue of the conjunction fallacy is
more subtle than this. In English,
if I were to say “Do you want steak
for dinner, or steak and potatoes?”
one would immediately parse this
as choice between

1 steak with no potatoes

2 steak with potatoes

Although strict logic would parse
this choice as

1 steak, possibly with potatoes
and possibly without potatoes

2 steak, definitely with potatoes,

it is common in English to have
the implied negative (i.e. steak
with no potatoes) when given
a choice where the alternative
is a conjunction (i.e. steak with
potatoes).

In an interesting experiment, Tversky and Kahneman[Tversky and
Kahneman, 1983] gave the following survey:

Linda is 31 years old, single, outspoken, and very bright. She majored
in philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in anti-nuclear
demonstrations.

Which is more probable?

1 Linda is a bank teller.

2 Linda is a bank teller and is active in the feminist movement.

85% chose option 2.[Tversky and Kahneman, 1974] This, they at-
tributed, to the conjunction fallacy - mistaking the conjunction of two
events as more probable than a single event. They went further and
did a survey of medical internists with the following

Which is more likely: the victim of an embolism (clot in the lung) will
experience partial paralysis or that the victim will experience both
partial paralysis and shortness of breath?

Combinations of Events and the
English language If we interpret the
doctor’s choice with this implied
negative, we have:

1 clot with paralysis and no
shortness of breath

2 clot with paralysis and shortness
of breath

and the first one is much less likely,
because it would be odd to have a
clot and not have a very common
symptom associated with it. The
doctor’s probability assessment is
absolutely correct: both symptoms
together are more likely than just
one. The “fallacy” arises because
the English language is sloppier
than mathematical language.

and again, 91 percent of the doctors chose that the clot was less
likely to cause the rare paralysis rather than to cause the combination
of the rare paralysis and the common shortness of breath.

Even when correct, the consequence for conjunctions can be mis-
used, or at least misidentified. Returning to our example of someone
winning the lottery and then getting struck by a car the next day, rare
events occur frequently, as long as you have enough events. There are
millions of people each day playing the lottery, and millions getting
struck by cars each day. We will explore this problem later in Sec-
tion 2.5, but one immediate consequence is that winning the lottery
and getting struck by a car the next day probably happens somewhere
fairly regularly.
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Sum Rule

Now we consider the statements of the form A or B. For example,
in the card game, what is the fraction of cards that are jacks or are
hearts. By counting we get the 13 hearts and 3 more jacks that are not
contained in the 13 hearts, or F (jack or ♥) = 13+3

52 = 16/52. Now, if
we tried to separate the terms, and do:

F (jack) + F (♥) =
4
52

+
13
52

=
17
52

then we get a number that is too big! It is too big because we’ve
double-counted the jack of hearts. Adjusting for this, by subtracting
one copy of this fraction, we get

F (jack) + F (♥)− F (jack and ♥) =
4

52
+

13
52
− 1

52
=

16
52

= F (jack or ♥)

In general
Sum Rule Sum Rule

P(A or B) = P(A) + P(B)− P(A and B)P(A or B) = P(A) + P(B)− P(A and B) (1.10)

Sum Rule for Exclusive Events If two events are mutually exclusive Sum Rule for Exclusive Events If
two events are mutually exclusive the
sum rule reduces to

P(A or B) = P(A) + P(B)

because P(A and B) = 0 for such
events.

the sum rule reduces to

P(A or B) = P(A) + P(B) (1.11)

because P(A and B) = 0 for such events.
So the probability of rolling a 1 or a 2 on one die is 2/6.
One more variant on the Sum Rule is where we have 3 propo-

sitions. It can be a bit tedious to write it all out, but the end result
looks a lot like the original Sum Rule. All we do is break up the
terms in pieces, and then apply the Sum Rule to each piece.

P(A or B or C) = P(A or [B or C])

= P(A) + P(B or C)− P(A and [B or C])

= P(A) + P(B) + P(C)− P(B and C)−
P(A and B or A and C)

= P(A) + P(B) + P(C)− P(B and C)−
[P(A and B) + P(A and C)−
P(A and B and A and C)]

which leads finally to
Sum Rule for Three Events Sum Rule for Three Events

P(A or B or C) = P(A) + P(B) + P(C)−
P(A and B)−
P(B and C)−
P(A and C) +

P(A and B and C)

P(A or B or C) = P(A) + P(B) + P(C)−
P(A and B)− P(B and C)− P(A and C) +

P(A and B and C) (1.12)
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In words, when you’re looking for the sum of several events, we
add the probabilities (i.e. P(A) + P(B) + P(C)), then subtract the
double counting (i.e. P(A and B)) as before. Finally, we need to
add back in the triple count (i.e. P(A and B and C)) because it was
taken out too many times with the double count. The accounting
here can be somewhat prone to error, but the concepts are always the
same: when you add probabilities of events, say A and B, together
the term P(A) includes the probability of both P(A and B) and the
term P(B) includes the probability of both P(A and B), so you’ve
included that probability twice and need to subtract one of them to
balance the books. Likewise (although it is harder to show), the first
six terms in Equation 1.12 end up subtracting one too many copies of
P(A and B and C), and we need to add one in at the end.

Marginalization

Another consequence of the sum rule and the product rule is a pro-
cess called marginalization.

Example 1.5 Marginalization and Card Suit

Imagine we have a number of conditional statements, like:

P (jack|♥) =
1

13

P (jack|♦) =
1

13

P (jack|♠) =
1

13

P (jack|♣) =
1

13

but we are interested in just the probability of drawing a jack, regard-
less of the suit, or in our notation

P (jack)

The marginalization procedure for this problem looks like:

P (jack) =

all possibilities︷ ︸︸ ︷
P (jack|♥)× P (♥) +

P (jack|♦)× P (♦) +

P (jack|♠)× P (♠) +
P (jack|♣)× P (♣)

=
1

13
× 1

4
+

1
13
× 1

4
+

1
13
× 1

4
+

1
13
× 1

4

=
4
52
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Marginalization If we have a complete set of conditional state- Marginalization If we have a com-
plete set of conditional statements,
like

P(A|B1), P(A|B2), P(A|B3), P(A|B4), · · ·
then the unconditional probability
is found by marginalizing over all
possible values of the conditional
events, like

P(A) =

all possible Bs︷ ︸︸ ︷
P(A|B1)P(B1) + P(A|B2)P(B2) + · · ·

ments, like

P(A|B1)

P(A|B2)

P(A|B3)

P(A|B4)

...

then the unconditional probability is found by marginalizing over all
possible values of the conditional events, like

P(A) =

all possible Bs︷ ︸︸ ︷
P(A|B1)P(B1) + P(A|B2)P(B2) + P(A|B3)P(B3) + · · · (1.13)

Bayes’ Rule
In the 1700’s Reverend Bayes
proved a special case of this rule,
and rediscovered in the general
form by Pierre-Simon Laplace.
Laplace then applied the rule in
a large range of problems from
geology, astronomy, medicine, and
jurisprudence.

One of the most consequential rules of probability is what is known
as Bayes’ Rule, sometimes called Bayes’ Theorem. We will use this
rule throughout this book, and see its many applications. It comes as
a direct result of the product rule (Equation 1.8)

P(A and B) = P(A|B)P(B) = P(B|A)P(A)

Rearranging, we get
Bayes’ Rule Bayes’ Rule

P(A|B) = P(B|A)P(A)

P(B)P(A|B) = P(B|A)P(A)

P(B)
(1.14)

We can verify this again with the intuitions we have in the simple
card game.

Example 1.6 What is the probability of drawing a jack, knowing that
you’ve drawn a face card?

In terms of fractions, this should be F (jack|face card) = 4/12 =

1/3. Applying Bayes’ Rule to the fractions we get:

F (jack|face) =
F (face|jack)× F (jack)

F (face)

=
4
4 × 4

52
12
52

=
4

12
=

1
3

Although this calculation is true, it isn’t particularly enlightening.
It is nicer to cast the problem back into probability terms, rather
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than fractions, and compare the probability of drawing a jack to the
probability of the same thing (i.e. drawing a jack) given that we know
that we’ve drawn a face card. This is

P (jack) =
1

13

P (jack|face card) =
1
3

This comparison highlights what Bayes’ Rule represents: learning. All of learning is simply updating
ones beliefs given the data. The
data may be words in a book, the
results of an experiment, a conver-
sation with another person, etc...
The strength of our beliefs are not
often thought of in mathematical
terms, but you are doing the math
of probabilities whenever you are
weighing the strength of your be-
liefs. Thus, the probabilistic rule -
Bayes’ rule - for updating beliefs
given data is really the quantitative
specification of learning. One can
use it qualitatively as well, which is
often useful in fields such as history
where the data do not tend to be
quantitative.

When you are asked what the probability of drawing a jack, from
the knowledge of the simple card game, you calculate the value of
1/13. Once you learn that you drew a face card, you update your
knowledge to include that information, and modify your probability
assignments to reflect this. This leads to an increased chance of the
card being a jack.

In a nutshell, Bayes’ Rule represents learning:

Initial Belief + New Data→ Improved Belief

It is used in science to infer causes from effects, and can thus be
written

P (cause|effect) =
P (effect|cause)× P (cause)

P (effect)

To infer the probability of a particular cause, given the events you
observe in the world, you first have to know the probability of the
cause itself (i.e. rarer causes will reduce the prior probability), and
how likely that the cause you’re looking at could have produced
the effects you’ve observed. These two items are the P (cause) and
P (effect|cause) terms, respectively. The entire calculation is scaled
by P (effect) which is all of the other ways that the effects could have been
produced by other causes.. Thus, it is not enough to show that giving
a particular medicine is followed by the symptoms disappearing to
establish that the medicine was the likely cause of the symptoms
disappearing. You have to calculate what other possible causes could
have had those effects, such as the normal functioning of the immune
system or the placebo effect. This is why carefully controlled studies
are necessary, to eliminate all of the other possible causes and to
determine the true cause of the effects observed.

We will spend large portions of several chapters on Bayes’ Rule, to
explore its long-ranging consequences.
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1.5 Venn Mnemonic for the Rules of Probability UNIVERSEUNIVERSE

A
1/8

1/4

A

1/4

1/1
6

UNIVERSE

1/8

BA

1/4

B

A and B

A or B

{

not A

Wednesday, May 28, 14

Figure 1.2: Venn diagram of a
statement, A, in a Universe of all
possible statements. It is customary
to think of the area of the Universe
to be equal to 1 so that we can treat
the actual areas as fractional areas
representing the probability of
statements like P(A). In this image,
A takes up 1/4 of the Universe, so
that P(A) = 1/4. Also shown is the
negation rule. P(A) + P(not A) = 1
or “inside” of A + “outside” of A
adds up to everything.

It is often useful to have a picture to represent the mathematics, so
that it is easier to remember the equations and to understand their
meaning. It is common to use what is called a Venn Diagram to rep-
resent probabilities in an intuitive, graphical way. The idea is that
probabilities are represented as the fractional area of simple geomet-
ric shapes. We can then find a picture representation of each of the
rules of probability. We start by looking at a sample Venn Diagram,
in Figure 1.2.

UNIVERSEUNIVERSE

A
1/8

1/4

A

1/4

1/1
6

UNIVERSE

1/8

BA

1/4

B

A and B

A or B

{
not A

Wednesday, May 28, 14

Figure 1.3: Venn diagram of the
sum and product. The rectangle B
takes up 1/8 of the Universe, and
the rectangle A takes up 1/4 of
the Universe. Their overlap here is
1/16 of the Universe, and represents
P(A and B). Their total area of
5/16 of the Universe represents
P(A or B).

The fractional area of the rectangle A represents the probability
P(A), and can be thought of as a probability of one of the statements
we’ve explored, such as P(♥). This diagram is strictly a mnemonic,
because the individual points on the diagram are not properly de-
fined. The diagram in Figure 1.2 also represents the Negation Rule
(Equation 1.7),

P(A) + P(not A) = 1

In the diagram it is easy to see that the sum of the areas inside of
A (i.e. 1/4) and outside of A (i.e. 3/4) cover the entire area of the
Universe of statements, and thus add up to 1.

Figure 1.3 shows the diagram which can help us remember the
sum and product rules. The Sum Rule (Equation 1.10)

P(A or B) = P(A) + P(B)− P(A and B)

is represented in the total area occupied by the rectangles A and B,
and makes up all of A (i.e. 1/4) and the half of B sticking out (i.e.
1/8-1/16=1/16) yielding P(A or B) = 5/16. This is also the area
of each added up (1/4+1/8), but subtracting the intersection (1/16)
because otherwise it is counted twice. Adding the areas this way
directly parallels the Sum Rule.

Conditional probabilities, like those that come into the Product
Rule (Equation 1.8) and Bayes Rule (Equation 1.14) are a little more
challenging to visualize. In Figure 1.4, P(A|B) is represented by the
fraction of the darker area (which was originally part of A) com-
pared not to the Universe but to the area of B, and thus represents
P(A|B) = 1/2. In a way, it is as if the conditional symbol, “|,” defines
the Universe with which to make the comparisons. On the left of Fig-
ure 1.4, the same darker area that was originally part of B represents
P(B|A) making up 1/4 of the area of A. Thus P(B|A) = 1/4. The
Product Rule (Equation 1.8) then follows,

P(A and B) = P(A|B)︸ ︷︷ ︸
1/2

P(B)︸ ︷︷ ︸
1/8

= P(B|A)︸ ︷︷ ︸
1/4

P(A)︸ ︷︷ ︸
1/4

=
1

16
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We can further see the special case of mutually exclusive state-
ments shown in Figure 1.5. The Sum Rule for Exclusive Events
(Equation 1.11) is simply the sum of the two areas because there is
no overlap

A

1/4
1/8

B

A|BB|A

Wednesday, May 28, 14

Figure 1.4: Venn diagram of con-
ditional probabilities, P(A|B) and
P(B|A). (Right) P(A|B) is repre-
sented by the fraction of the darker
area (which was originally part of
A) compared not to the Universe but
to the area of B, and thus represents
P(A|B) = 1/2. In a way, it is as if
the conditional symbol, “|,” defines
the Universe with which to make
the comparisons. (Left) Likewise,
the same darker area that was orig-
inally part of B represents P(B|A)
which makes up 1/4 of the area of
A. Thus P(B|A) = 1/4.

UNIVERSEUNIVERSE

A
1/8

1/4

A

1/4

1/1
6

UNIVERSE

1/8

BA

1/4

B

A and B

A or B

{
not A

Wednesday, May 28, 14

Figure 1.5: Venn diagram of mu-
tually exclusive statements. One
can see that P(A and B) = 0
(the overlap is zero) and
P(A or B) = P(A) + P(B) (the
total area is just the sum of the two
areas)

P(A or B) = P(A) + P(B)

Further, it is straightforward to see from this diagram the following
properties for mutually exclusive events

P(A and B) = 0

P(A|B) = 0

P(B|A) = 0

1.6 Lessons from Bayes’ Rule - A First Look

Bayes’ Rule is the gold standard for all statistical inference. It is a
mathematical theorem, proven from fundamental principles. It struc-
tures all inference in a systematic fashion. However, it can be used
without doing any calculations, as a guide to qualitative inference.
Some of the lessons which are consequences of Bayes’ Rule are listed
here, and will be noted throughout this text in various examples.

• Confidence in a claim should scale with the evidence for that claim

• Ockham’s razor, which is the philosophical idea that simpler the-
ories are preferred, is a consequence of Bayes’ Rule when compar-
ing models of differing complexity.

• Simpler means fewer adjustable parameters

• Simpler also means that the predictions are both specific and not
overly plastic. For example, a hypothesis which is consistent with
the observed data, and also be consistent if the data were the op-
posite would be overly plastic.

• Your inference is only as good as the hypotheses (i.e. models) that
you consider.

• Extraordinary claims require extraordinary evidence.7 7 Carl Sagan. Demon-Haunted
World: Science as a Candle in the Dark.
Random House LLC, 1996• It is better to explicitly display your assumptions rather than im-

plicitly hold them.

• It is a good thing to update your beliefs when you receive new
information.

• Not all uncertainties are the same.
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There is not a universal agreement for the translation of numerical
probability values to qualitative terms in English (i.e. highly unlikely,
somewhat unlikely, etc...). One rough guide is shown in Table 1.1. I
will be following this convention throughout the book, but realize
that the specific probability distinctions are a bit arbitrary.

term probability

virtually impossible 1/1,000,000

extremely unlikely 0.01 (i.e. 1/100)
very unlikely 0.05 (i.e. 1/20)

unlikely 0.2 (i.e. 1/5)
slightly unlikely 0.4 (i.e. 2/5)

even odds 0.5 (i.e. 50-50)
slightly likely 0.6 (i.e. 3/5)

likely 0.8 (i.e. 4/5)
very likely 0.95 (i.e. 19/20)

extremely likely 0.99 (i.e. 99/100)
virtually certain 999,999/1,000,000

Table 1.1: Rough guide for the
conversion of qualitative labels to
probability values.





2 Applications of Probability

In this chapter we go through a number of examples of the uses of
probability, and present several useful mathematical tools along the
way.

2.1 Cancer and Probability

This is perhaps the most important probability question to learn, so
we will spend some time covering it here and then cover it again, in a
slightly different way, in Section 5.1 on page 109. Imagine we have a
population of 10000 people who have been tested for cancer, and we
get the following hypothetical data:

Number of
Individuals

Negative Test Positive Test Total

Doesn’t Have
Cancer

9200 700 9900

Has Cancer 20 80 100

9220 780 10000

We may be interested in a number of related probabilities.

Example 2.1 What is the probability of both having cancer and getting a
positive test for it?

We can determine this by simply dividing the person counts from
the table

P (cancer and positive test) =
# of people with both cancer and positive test

total # of people

=
80

10000
= 0.008

Doing this process for every part of the table yields a posterior
probability table, giving the probability for every combination of
variables (i.e. with cancer and positive test, without cancer and posi-
tive test, etc...)
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Posterior Prob-
ability

Negative Test Positive Test Total

Doesn’t Have
Cancer

0.92 0.07 0.99

Has Cancer 0.002 0.008 0.01

0.922 0.078 1.0

Example 2.2 What is the probability of both not having cancer and getting
a positive test for it?

Reading off of the table, we have

P (no cancer and positive test) = 0.07

This question, it turns out, is a not very interesting question. The
type of question that actually arises in life is the following,

Example 2.3 What is the probability of having cancer given a positive test
for it?

Here we can perform the calculation in a couple of different ways,
to give the (unintuitive) result.

1 Counting the individuals.

P (cancer|positive test) =
# of people with both cancer and positive test

# of people with a positive test

=
80

780
= 0.103

Although those with cancer nearly always test positive, out of the
pool of all people who test positive - including a large number of
false-positives - those actually having cancer are a small minority.
It is because there are many more people without cancer, so even
if a small fraction of those mistakenly test positive it will outweigh
the small fraction of those people with the disease. This is why
we insist on second opinions and why the rarity of a disease often
matters even more than the accuracy of the test.

2 Applying Product Rule

Using the Product Rule (Section 1.4 on page 42), we have

P (positive test) = P (no cancer and positive test) + P (cancer and positive test)

= = 0.07 + 0.008 = 0.078
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P (cancer|positive test) =
P (cancer and positive test)

P (positive test)

=
0.008
0.078

= 0.103

where we have used the sum of the Positive Test column for P (positive test).
This is simply a shortcut to the marginalization process (Section 1.4
on page 46) - determine the probability of an event by adding up
all of the possible conditional situations.

2.2 Weather

Example 2.4 If the probability that it will rain next Saturday is 0.25 and
the probability that it will rain next Sunday is 0.25, what is the probability
that it will rain during the weekend?

First Solution - Independence

If we assume that Sunday and Saturday weather are independent then
the sum-rule (Section 1.4) applies:

P(rain Saturday or rain Sunday) =

P(rain Saturday) + P(rain Sunday)− P(rain Saturday and rain Sunday)

= P(rain Saturday) + P(rain Sunday)− P(rain Saturday)× P(rain Sunday)

= 0.25 + 0.25− 0.25× 0.25 = 0.4375 (2.1)

The diagrams in Figure 1.3 are useful in making this calculation
more intuitive, especially the term where we subtract P(rain Saturday)×
P(rain Sunday) because otherwise we over count the double-rain
weekends. Another way to think of this term

can be seen in answering a different
question - what is the total number
of weekends with rain?. Imagine we
have, in a year, 40 Saturdays with
rain (by simply going through
all of the Saturdays and counting
them if it rains on that day) and we
also have 40 Sundays with rain. If
we want to know the number of
weekends with rain we can add
the Saturdays with rain and the
Sundays with rain (coming to 80!)
and it becomes clear that we’ve over
counted those weekends where it
rained both days - a year can only
have 52 (or possibly 53) weekends.
We need to subtract those double-
counts to get a reasonable answer.
The same logic applies to the
calculation of probabilities.

Second Solution - Correlation

Is it really reasonable that rain on Saturday and Sunday are indepen-
dent events? Probably not! It’s probably the case that knowing that
it rained on Saturday, then rain on Sunday is more likely. It may also
be that if it didn’t rain on Saturday then it will be less likely for rain on
Sunday. So we’d have information possibly like:

P (rain Sunday|rain Saturday) = 0.35

P (rain Sunday|not rain Saturday) = 0.15

Knowing this changes the equation as

P(rain Saturday or rain Sunday) =

= P(rain Saturday) + P(rain Sunday)− P(rain Saturday and rain Sunday)
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Notice, however, that we don’t have a direct expression for P(rain Sunday)
anymore. We only have the conditional or dependent forms, like P (rain Sunday|rain Saturday).
We can use the marginalization procedure (Equation 1.13 on page 47),
and sum over all of the conditional expressions

P (rain Sunday) = P (rain Sunday|rain Saturday) P (rain Saturday) +

P (rain Sunday|not rain Saturday) P (not rain Saturday)

= 0.35× 0.25 + 0.15× (1− 0.25) = 0.2

and then we have

= P(rain Saturday) + P(rain Sunday)− P(rain Saturday)× P (rain Sunday|rain Saturday)

= 0.25 + 0.2− 0.25× 0.35 = 0.3625 (2.2)

which makes it less likely to rain on the weekend if the Sunday rain
is correlated with the Saturday rain (Equation 2.2) than if they are
independent (Equation 2.1). Why is that?

One way to think of it is that, although the probability of rain on
Sunday is increased due to rain on Saturday, it is more likely that Sat-
urday is not rainy. In those cases, which are more frequent, Sunday
is less likely to be rainy as well. When the two days are indepen-
dent, Sunday’s rain is the same probability regardless of Saturday’s
weather. When they are dependent, then the more often clear Satur-
day weather makes it a little less likely for the Sunday rain, and thus
lowers the chance of weekend rain by a little bit.

2.3 Adding Dice

All possible results from rolling
two dice:

sum (die 1,die 2)
2 (1,1)
3 (1,2),(2,1)
4 (3,1),(1,3),(2,2)
5 (1,4),(4,1),(3,2),(2,3)
6 (1,5),(5,1),(4,2),(2,4),(3,3)
7 (1,6),(6,1),(5,2),(2,5),(4,3),(3,4)
8 (3,5),(5,3),(6,2),(2,6),(4,4)
9 (5,4),(4,5),(3,6),(6,3)

10 (4,6),(6,4),(5,5)
11 (6,5),(5,6)
12 (6,6)

(36 arrangments total)

Example 2.5 What is the probability of the sum of two dice getting a
particular value, say, 7?

In this case, we simply outline every single possibility, and count
the fractions. In a more complex case we may need to find a better
method of counting, but the idea will be the same.

We find immediately that the probability of getting a sum of 7

is the largest, because there are more arrangements of the two dice
which yield a sum of 7 than for any other sum. Each probability
of a particular sum is just the number of arrangements to get that
particular sum divided by the total number of arrangements of a two
dice (i.e. 36).
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= 0.028
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= 0.055

P(4) =
3

36
= 0.083

P(5) =
4

36
= 0.111

P(6) =
5

36
= 0.139

P(8) =
5

36
= 0.139

P(9) =
4

36
= 0.111

P(10) =
3

36
= 0.083

P(11) =
2

36
= 0.055

P(12) =
1

36
= 0.028

Example 2.6 What is the probability of rolling a sum more than 7 with
two dice?

In our notation this is

P(8 or 9 or 10 or 11 or 12)

which are all exclusive events, so we use the Sum Rule for exclusive
events (Equation 1.11) and obtain

P(8 or 9 or 10 or 11 or 12) = P(8) + P(9) + P(10) + P(11) + P(12)

= 0.139 + 0.111 + 0.083 + 0.055 + 0.028

= 0.416

Example 2.7 What is the probability of rolling various sums with two dice
each with 20 sides?

20-sided dice are common in some kinds of games, and provide a
nice alternative to the standard 6-sided variety. The figure comparing
the 6-sided and 20-sided dice can be see in in Figure 2.1 on page 57.
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Figure 2.1: Probability for rolling
various sums of two dice. Shown
are the results for two 6-sided dice
(left) and two 20-sided dice (right).
The dashed line is for clarity, but
represents the fact that you can’t
roll a fractional sum, such as 2.5.
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2.4 The Birthday Problem

This is a famous problem in probability1, which we address here in 1

stages. We introduce a simple version, and make it more complex in
steps until we can tackle the general problem.

Two People on April 3

Example 2.8 Let’s imagine we have the case where two people meet on the
street. What is the probability that they both have April 3 as their birthday?

This can be solved with a straightforward application of the prod-
uct rule, Equation 1.8 on page 42.

A ≡ Person 1 has a birthday on, say, April 3

B ≡ Person 2 has a birthday on, say, April 3

P(A and B) = P(A|B)P(B)

Each of these terms can be calculated. Firstly, P(A|B) is the proba-
bility that person 1 has a certain birthday given that person 2 has the
same birthday. However, knowing the birthday of the second person
doesn’t tell us anything about the birthday of the first person, thus
they are independent and P(A|B) = P(A).

Secondly, the probability of having any particular birthday is sim-
ply P(A) = 1/365. Finally, we have This is the simplest assumption -

that each day is equally likely to be
born on. However, this is probably
not true - there are some days that
are more likely than others. In
addition, once you start including
February 29, then things obviously
change.

A ≡ Person 1 has a birthday on, say, April 3

B ≡ Person 2 has a birthday on, say, April 3

P(A and B) =
1

365
× 1

365
=

1
133, 225

= 0.0000075

which is extremely unlikely (see Table 1.1 on page 51)!

Two People

Example 2.9 Two people meet on the street, and we ask what is the proba-
bility that they both have the same birthday?

How is this different than the previous question, where we spec-
ified which birthday they had? Our intuition immediately suggests
that this probability must be higher than the previous one, because
there are more possibilities - rather than April 3, they could be born
on January 1 or May 3 or any other day. Using our notation we have
the following definitions: In all of these examples we are

not considering leap days, which
occur approximately once every
four years. These extra days do
not change any of the qualitative
results, and really only serve as
a small extra correction to any
analysis. However, it does add a fair
amount of bookkeeping with very
little increase in enlightenment, so
we choose to avoid this problem in
our examples.

C1 ≡ Person 1 and Person 2 both have a birthday on January 1
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C2 ≡ Person 1 and Person 2 both have a birthday on January 2

...

C365 ≡ Person 1 and Person 2 both have a birthday on December 31

and the probability we are looking for is

P(C1 or C2 or · · · or C365)

In this situation we can note that these are exclusive statements.
For example, it can’t be true that both C1 and C2 are true - you can’t
have more than one birthday. Thus, the Sum Rule (Equation 1.10 on
page 1.10) reduces to the Limited Sum Rule (Equation 1.11). Further,
each term in that rule is the same

P(C1) = P(C2) = · · · = P(C365) =
1

365
× 1

365

so we have

P(C1 or C2 or · · · or C365) =(
1

365
× 1

365

)
+

(
1

365
× 1

365

)
+ · · ·+

(
1

365
× 1

365

)
︸ ︷︷ ︸

365 terms, one for each day

=
1

365
= 0.0027

Another way to think of this is to imagine that person 1 randomly
“chooses” their birthday, D1, and person 2 randomly “chooses” their
birthday, D2, and then they compare to see if the days are the same,
or D1 = D2. In general, we can think of the problem broken up in
this way: Here we find another example

of the general requirement that
equivalent states of knowledge
give rise to equivalent probability
assignments. In this case it means
that if there is more than one way
to arrive at a conclusion, they each
must give the same answer. We
can then choose the way that is
easiest to calculate, simply out of
convenience.

P(D1 = D2) =

P
(

D1 is a specific day and
D2 is the same day

)
×
(

number of possible
specific days

)
In this way, we get

P(D1 = D2) =

(
1

365
× 1

365

)
× (365)

=
1

365
= 0.0027

which is extremely unlikely (see Table 1.1 on page 51), but not nearly
as unlikely as them both having the same April 3 birthday.

Three People

Example 2.10 What is the probability that three random people have the
same birthday?
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Going through the same logic, we have

P(D1 = D2 = D3) =

(
1

365
× 1

365
× 1

365

)
× 365

=
1

133, 225
= 0.0000075

which is even more extremely unlikely (see Table 1.1 on page 51)
than the previous two-person example. It is interesting to note that
this is the same answer we received when we asked for the probabil-
ity of two people with a specific birthday. One can think of the three
people having the same, unspecified, birthday in the following way if
it helps. The first person’s birthday specifies the necessary birthday
for the other two, so it is the same as the case where we specify a
single birthday for two people.

Two People...Out of Three

Usually, we don’t have a situation where we have random people
meeting and all agreeing on birthdays. What we have is a group of
people talking, and two people in the group end up saying “Hey,
my birthday is April 3 too!” This is quite a bit different, and leads to
some unintuitive consequences. Let’s go through the situation with
three people, and we ask the question

Example 2.11 What is the probability that at least two have the same
birthday?

Writing the possibilities out like
this is quite tedious, and can
lead to errors. Directly after this
calculation we find an equivalent,
and much easier, way of writing
the same calculation. However, it is
important to note that all ways of
writing the same information must
lead to the same answer.

Writing this out we get (somewhat messily)

P(at least two out of three have the same birthday) =

= P(exactly 2 the same or exactly 3 the same)

= P(exactly 2 the same) +

P(exactly 3 the same)︸ ︷︷ ︸
( 1

365 )
3×365

− P(exactly 2 and exactly 3 the same)︸ ︷︷ ︸
0

The term P(exactly 2 the same) can be broken up like

P(exactly 2 the same) = P(a specific 2 are the same)×
number of

possibilities of
2 the same


= P(D1 = D2 and not D1 = D3)×

number of
possibilities of
2 the same


Applying the product rule we get I’m sure you’re wishing for the

easier way about now...it’s coming
in Example 2.12.
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P(exactly 2 the same) =

= P(D1 = D2 and not D1 = D3)×
number of

possibilities of
2 the same


= P(D1 = D2|not D1 = D3)P(not D1 = D3)×

number of
possibilities of
2 the same


= P(D1 = D2)︸ ︷︷ ︸

1
365

P(not D1 = D3)︸ ︷︷ ︸
364
365

×
number of

possibilities of
2 the same


Noting that there are 3 ways of getting a specific 2 the same, we These 3 ways are “person 1 and 2

match”, “person 1 and 3 match”,
“person 2 and 3 match.”

obtain for this single term

P(exactly 2 the same) =
1

365
× 364

365
× 3

Putting it all together we have

P(at least two out of three have the same birthday) =

= P(exactly 2 the same or exactly 3 the same)

=
1

365
× 364

365
× 3 +

(
1

365

)3
× 365

= 0.0082

Example 2.12 What is the probability that at least two have the same
birthday? A clever shortcut.

A clever way of rethinking this problem, which significantly re-
duces the calculations, is found by asking the following question: in a
group of people, what is the probability that none of the people have
the same birthday? This can be approached in a step-wise fashion.
Person 1 “chooses” a birthday, out of 365 they have all 365 possibili-
ties. Person 2 “chooses” their birthday, with probability P = 364/365
of not being the same as Person 1. Person 3 now has 363 “choices”
out of 365 to avoid both other birthdays, etc... So the probability of
using this process and getting to Person 3 and not have any overlap-
ping birthdays is simply

P(none the same in 3 people) =
365
365
× 364

365
× 363

365
Now, if we’re interested in the probability that at least two are the
same, then this is the exact opposite of the probability that none are
the same. Using the Negation Rule (Equation 1.7 on page 41) we have

P
(

none the same
in 3 people

)
+ P

not “none
the same in 3

people”

 = 1
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P
(

none the same
in 3 people

)
+ P

at least 2 the
same in 3

people

 = 1

which leads to

P

at least 2 the
same in 3

people

 = 1− P
(

none the same
in 3 people

)

= 1− 364
365
× 363

365
= 0.0082

Two People...Out of Thirty

Example 2.13 When you have a group of 30 people, like students in a
classroom, and you ask what the probability of finding two in the room with
the same birthday, would your intuition say it is greater or less than 50%?

Many people find that their intuition suggests reasonably strongly
that it would be less than 50%. We can now do this problem quite
easily, and we find that our intuition does not match. Following the We’ve often used our intuition to

verify the result, but now we’ve
reached a state where the problems
get subtle enough that our intuition
fails. It is good to use ones’ intu-
ition on the “easy” problems, but
now that we’ve established the pro-
cess we can tackle problems where
our intuition is not good enough to
confirm a result.

same procedure as with 3 people, we imagine each person “choos-
ing” their birthday with a dwindling selection as we go on to avoid
“choosing” one that has already been taken. The probability that no
one in the room has the same birthday as any other is

P(none the same in 30 people) =
365
365
× 364

365
× 363

365
× · × 336

365︸ ︷︷ ︸
30 terms

= 0.29

So the probability of having at least 2 people in the room having
the same birthday is

P

at least 2 the
same in 30

people

 = 1− 0.29

= 0.71

which is 71%! Compare this likely outcome to the extremely rare out-
come of having two random people having matched birthdays, from
page 58. See Figure 2.2 to see a plot of this unintuitive observation.

2.5 The Lottery Problem or Rare Things Are Common

This problem is identical to the birthday problem mathematically,with
the only difference that the probability numbers are much smaller
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Figure 2.2: Probability of having at
least two people in a group with
the same birthday depending on
the number of people in the group.
The 50% mark is exceeded once the
group size exceeds 23 people.

and the number of participants is much larger. We start with a story
about someone winning the lottery twice in the same day!2 2

Can you imagine winning the lottery twice in one day?

Angelo and Maria Gallina don’t have to imagine - they hit twice on
Nov. 20.

The married couple from Belmont, Calif., had separately bought tick-
ets in two different California state lottery games, and both could
hardly believe their eyes as all 11 winning numbers over two games
came up....Before taxes, their winnings amounted to $126,000 for the
Fantasy 5 and $17 million for the SuperLotto Plus, according to The
Associated Press....Orkin arrived at the number by multiplying the
roughly 41-million-to-one odds of winning the SuperLotto game and
the 575,000-to-one odds of winning the Fantasy 5 game to arrive at
odds of 23,575,000,000,000-to-one.

Pretty amazing! That’s something like

P (winning two tickets) =
1

2 · 1013 ∼ 5 · 10−14 (2.3)

which truly is quite improbable as a single event, but is it truly an
improbable event to happen somewhere? The assumption stated in
the quote is that only two tickets were purchased. We all know that
many lottery tickets are purchased daily, which should increase the
chance that somewhere this will occur. Even this winning couple pur-
chased tickets every day for 20 years before winning this.
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Like the birthday problem, you have to set up the problem in
the negative, and as what the probability of no one winning two
lotteries. If we assume 5 million people playing daily for 20 years,
this probability is:

P

no one
winning
two tickets

∣∣∣∣∣∣∣∣
5 million
plays daily
for 20

years

 =

(
1− 1

2 · 1013

)5·106×365×20
(2.4)

∼ (1− 5 · 10−14)5·106×365×20

= 0.998 (2.5)

yielding a 0.2% chance of this happening sometime in those 20 years
- still pretty rare, but not outrageously so. If we further imagine that
this is occurring across the 50 states, this increases to 10% chance of
this happening sometime in those 20 years. If we further imagine that
there are as many as 5 different lotteries (there are usually more) that
could be played per state, this jumps up to 40%.

What we see as an initially highly unlikely event starts to become
likely and in fact common when considering all of the possible ways
that event could be produced.

2.6 Monty Hall Problem

One of the most popular probability problems is called the Monty
Hall problem, and is based on the television game show “Let’s Make
a Deal.”3 It can take on many forms, but a common form is as fol- 3

lows4 4

Example 2.14 Suppose you’re on a game show, and you’re given the choice
of three doors: behind one door is a car; behind the others, goats. You pick a
door, say No. 1 (but the door is not opened), and the host, who knows what’s
behind the doors, opens another door, say No. 3, which has a goat. He then
says to you, "Do you want to change your choice to door No. 2?" Is it to
your advantage or disadvantage to switch your choice, or does it matter
whether you switch your choice or not?

The result is that it is always better to switch, where the probability
of getting the car moves up from 1/3 to 2/3 by switching! Because
this problem is particularly unintuitive, we will break it up into
smaller pieces. The critical aspect of this is that a change in our as- Most people will state that, because

we are left with 2 choices, it must
be 50-50. However there is added
information in the system which
moves us from knowing nothing
about the two choices (i.e. 50-50

chance) to knowing a little bit more
about the two choices (i.e. not 50-50

chance).

signment of probability to an event must be somehow tied to a change in our
information about that event. In order to understand the problem, we
must then understand where the extra information is coming from.

We will step up to the full problem listed, but for now we explore
some simpler versions of the problem.
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Two Doors with Information

Example 2.15 Imagine we have a game with two doors: Behind one door
is a car; behind the other is a goat. You pick a door, say No. 1 (but the door
is not opened), and the host, who knows what’s behind the doors, says that
there is a 90% chance that the car is behind door No. 2. Is it to your advan-
tage to switch your choice?

Initially there is a two-door choice, with no information about ei-
ther choice, so we assign equal probabilities to the choices: P (car behind No. 1) =

P (car behind No. 2) = 0.5 (i.e. a 50-50 chance). After the host gives
information, this changes. Although this is still a two-door choice, it
is no longer a 50-50 chance. By having a knowledgable person give
you information suddenly changes the situation to a 10-90 chance,
and it is much better for you to switch.

What if the host were a little less direct? Perhaps something like

Example 2.16 The host, who knows what’s behind the doors, points to a
door, choosing the correct door 90% of the time and the incorrect one 10%.
You pick a door, say No. 1, and the host points to door No. 2. Is it to your
advantage to switch your choice?

This amounts to an identical situation as the previous one - the host
is giving you correct information 90% of the time, and we are in a
much better position switching.

Three Doors with Information

We return to the three-door case with a slight variation

Example 2.17 Suppose you’re on a game show, and you’re given the choice
of three doors: Behind one door is a car; behind the others, goats. You pick a
door, say No. 1 (but the door is not opened), and the host, who knows what’s
behind the doors, says that another door, say No. 3, has a 0% chance of
having a car, and that the remaining door (that you haven’t chosen - i.e door
No. 2) has a 66% of having the car. He then says to you, "Do you want to
pick door No. 2?" Is it to your advantage to switch your choice?

In this case, switching to door No. 3 would be ridiculous - we
know the car isn’t there, because the (honest) host knows that it is not
there. The host also has told us that there is a 66% chance of the car
behind door No. 2, and thus we have P (car behind No. 1) = 0.34
and P (car behind No. 2) = 0.66 and it is better to switch to door No.
2.

It isn’t the number of choices that is important, it is the informa-
tion we have about those choices. When you have no information, we
assign equal probabilities. When we have information, we can assign
non-equal probabilities.
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Three Doors Down To Two

Back to our original problem, we have

Example 2.18 Suppose you’re on a game show, and you’re given the choice
of three doors: behind one door is a car; behind the others, goats. You pick a
door, say No. 1 (but the door is not opened), and the host, who knows what’s
behind the doors, opens another door, say No. 3, which has a goat. He then
says to you, "Do you want to change your choice to door No. 2?" Is it to
your advantage or disadvantage to switch your choice, or does it matter
whether you switch your choice or not?

The key part is that, no matter what happens,

1 the host never opens your door

2 the host always opens a door with a goat
Another way to look at this is to
imagine a game with 1000 doors,
car behind only one, and the host
has to open up 998 doors (not yours
and not the prize - if the prize is
different than yours). Once you
pick, say door number 1, and the
host opens every door except door
576, and gives you the opportunity
to switch is it a good choice? Of
course! Ones intuition realizes that
my initial 1/1000 chance of getting
it right (and thus have the other
door have a goat) is swamped by
the 999/1000 chance of getting it
wrong, and the host being forced to
open every door without the prize.

Given that your first choice, with three equal probability choices
(i.e. you have no information about any of the choices), we expect to
be correct only about 33% of the time. If we happened to get lucky
with our first choice, then the host has a pick of two doors with goats
and has some freedom. If we happened to get unlucky with our first
choice (and there is a goat behind it), then the host has no freedom at
all, because there is only one remaining door with a goat. So, about
66% of the time the host is forced to reveal some of his information,
because the door he leaves closed (other than your door) must have
the car. Thus, 66% of the time the host is telling you where the car is,
just a little indirectly.

Formally, we need to involve model comparison, so we postpone
this particular analysis until Section 5.4.

2.7 Exercises

Exercise 2.1 What is the probability that at least 3 people have the same
birthday in a group of 50?

Exercise 2.2 Examine the case of Monty Hall with 4 doors, the host open-
ing one door with a goat, and leaving you with a choice of 3. Should you
switch? Does it matter which of the other two you choose?

Exercise 2.3 What is the probability of rolling various sums from two
9-sided dice?

Exercise 2.4 What is the probability of rolling an odd sum with two dice?

Exercise 2.5 What is the probability of rolling more than 7 from two 20-
sided dice?
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Exercise 2.6 Given the table above, determine the following quantities, and
describe what they mean:

1 P (cancer and negative test)

2 P (cancer|negative test)

3 P (not cancer)

4 P (not cancer) + P (cancer)

2.8 Some Philosophical Applications

Doctors’ Claims - English Language and Probability

In Section 1.4 we introduced work by Tversky and Kahneman doc-
umenting supposed failures in proper reasoning. In the example
survey of medical internists, the internists were asked

Which is more likely: the victim of an embolism (clot in the lung) will
experience partial paralysis or that the victim will experience both
partial paralysis and shortness of breath?

and 91 percent of the doctors chose that the clot was less likely to
cause the rare paralysis rather than to cause the combination of the
rare paralysis and the common shortness of breath.

This may not be a failure of reasoning, but a (correct!) failure of
the doctors to translate the English language literally into logical
language. It is likely that when doctors are asked: “Which is more
likely: that the victim of an embolism will experience partial paral-
ysis or that the victim will experience both partial paralysis and
shortness of breath?” they interpret it as:

1 someone is claiming that the patient has an embolism

2 the patient is claiming, or someone has measured, that she has
partial paralysis

3 the patient is claiming, or someone has measured, that she has
shortness of breath

The doctors are separating the analysis of the claim of the clot,
which is given information, from the other claims. Another way of
looking at it is to include the knowledge of the method of reporting.
Someone who is reporting information about an ailment will tend to
report all of the information accessible to them. By reporting only the
paralysis, there are two possibilities concerning the person measuring
the symptoms of the patient:
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1 they had the means to measure shortness breath in the patient, but
there was none

2 they did not have the means to measure shortness of breath

In the first case, the doctor’s probability assessment is absolutely
correct: both symptoms together are more likely than just one. In the
second case, the doctors are also correct: one of the sets of diagnostic
results (i.e. just paralysis) is less dependable than the other set (i.e.
both symptoms), thus the second one is more likely to indicate a clot
or is consistent with the known clot.

It isn’t that the doctors are reasoning incorrectly. They are includ-
ing more information, and doing a more sophisticated inference than
the strict, formal, minimalistic interpretation of the statements would
lead one to do. This analysis works well for other examples stated in
the book A Drunkard’s Walk by Mlodinow[?], like “Is it more probable
that the president will increase federal aid to education or that he
or she will increase federal aid to education with funding freed by
cutting other aid to states?”

All of this underscores the need to be careful translating state-
ments of probability into plain English and vice versa.

Diverging Opinions

Is it possible to have people informed by the same information, and
reasoning properly, to have diverging opinions? It might seem in-
tuitive that people given the same information, reasoning properly,
would tend to come to agreement, however this is not always the
case. What is interesting is that it turns on the prior probabilities for
claims. This example comes from Jaynes, 2003

5. We have the follow- 5 E. T. Jaynes. Probability Theory:
The Logic of Science. Cambridge
University Press, Cambridge, 2003.
Edited by G. Larry Bretthorst

ing piece of information:

D :=
{

“Mr N. has gone on TV with a sensational claim
that a commonly used drug is unsafe”

and we have observers A, B, and C with different prior assignments
to the reliability of Mr N and of the safety of the drug. These prior
assignments may have been the result of previous inference by these
observers, in a different context, or possibly due to expert knowledge.
Observers A and C believe, before the announcement, that the drug
is reasonably safe. Observer B does not. We have the probability
assignments then:

PA(Safe) = 0.9

PB(Safe) = 0.1

PC(Safe) = 0.9
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They all agree that if the drug is not safe, then Mr N would an-
nounce it, so we have

PA(D|not Safe) = 1

PB(D|not Safe) = 1

PC(D|not Safe) = 1

Finally, we have the perceptions from the observers about the reli-
ability of Mr N if the drug is actually safe. In this case, observer A is
trusting of Mr N, observer C is strongly distrustful, and observer B is
mildly distrustful. By “distrustful” we are referring to the probabili-
ties that Mr N would make the announcement that the drug is unsafe
even if the drug were actually safe. So we have

PA(D|Safe) = 0.01

PB(D|Safe) = 0.3

PC(D|Safe) = 0.99

We want to know how each observer then determines whether the
drug is safe, given the announcement, or P(Safe|D) for each observer.

Applying Bayes’ Rule we have

PA(Safe|D) =
PA(D|Safe)PA(Safe)

PA(D|Safe)PA(Safe) + PA(D|not Safe)PA(not Safe)

=
0.01 · 0.9

0.01 · 0.9 + 1 · 0.1
= 0.083

Following the same calculation for the others, we get the observers
updating their probability assignments after the announcement, D, as

PA(Safe) = 0.9 → PA(Safe|D) = 0.083

PB(Safe) = 0.1 → PB(Safe|D) = 0.032

PC(Safe) = 0.9 → PC(Safe|D) = 0.899

Observer A changed their mind, Observer B had their assessment
confirmed a bit, and Observer C barely budged.

Although you’d think that hearing the announcement of the un-
safe nature of the drug would have moved all of the probabilities by
the same amount, but the information isn’t that the drug is unsafe,
but the someone is claiming that the drug is unsafe. Thus, ones prior
information about both the drug and who is making the claim comes
into play.

A problem of independence

As said in the beginning of Chapter 1 (Introduction to Probability),
in 1968 a jury found defendant Malcolm Ricardo Collins and his wife



70 statistical inference for everyone

defendant Janet Louise Collins guilty of second degree robbery. The
prosecutor focussed on the the distinctive features of the dependence,
and assigned a probability to each as follows6: 6 J. Sullivan. People v. Collins ,

68 cal.2d 319, 1968. URL http:

//scocal.stanford.edu/opinion/

people-v-collins-22583
1 Partly yellow automobile 1/10

2 Man with mustache 1/4

3 Girl with ponytail 1/10

4 Girl with blond hair 1/3

5 Negro man with beard 1/10

6 Interracial couple in car 1/1000

He then followed with the calculation applying the product rule for
independent events (Section 1.4 on page 43), to find the probability
that all these things could have been observed:

1
10
× 1

4
× 1

10
× 1

3
× 1

10
× 1

1000
=

1
12, 000, 000

The initial conviction was overturned for two primary reasons,
one legal and one mathematical. The legal argument was that the
prosecution had not established that these initial probabilities were
supported by the evidence. However, the really devastating part of
the argument was mathematical. As you may recall, the product rule
used in this way assumes the independence of the terms (Section 1.4 on
pageSection 43).

Example 2.19 Beard and Mustache - An Examination of Independence

For an example, the proper product rule for two of the terms
above would look like:

P (Man with beard and Man with mustache) =

P (Man with mustache|Man with beard) P (Man with beard)

What the prosecutor was assuming is that these two items were
independent, from which it would follow that

P (Man with beard and Man with mustache) =

P (Man with mustache) P (Man with beard) =
1
40

= 0.025

However, with a very brief thought, we notice that this is equiva-
lent to saying

Knowing the man has a beard tells us nothing about the probability of
him having a mustache!

http://scocal.stanford.edu/opinion/people-v-collins-22583
http://scocal.stanford.edu/opinion/people-v-collins-22583
http://scocal.stanford.edu/opinion/people-v-collins-22583
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Clearly, it is not nearly as common to have a beard with no mus-
tache than with one, so knowing that the man had a beard would
nearly certainly imply that he had a mustache or,

P (Man with beard and Man with mustache) =

P (Man with mustache|Man with beard)︸ ︷︷ ︸
∼1

P (Man with beard) ∼ 1
10

and the probability calculated, just from these two terms, is much
higher than the prosecutor was communicating.

Similar sorts of absurdities occur with other terms, like “blond
hair” and “pony tail”, as well as others. Finally, even if it was the
case that this is a somewhat rare combination, given the number of
people in Los Angeles, one might be able to calculate the probability
that there is at least one more couple satisfying these characteristics.
Just like the lottery problem (Section 2.5 on page 62), it becomes
likely that there are more couples in the area like this, and thus the
ruling was overturned.

Another problem with independence

Another problem brought up in the opening of Chapter 1 (Intro-
duction to Probability) is the case of Sally Clark. Sally Clark was
convicted in 1999 of the murder of her two young sons7. In the case, 7 Lord Justice Kay. R vs Sally

Clark, April 2003. URL http:

//www.bailii.org/ew/cases/EWCA/

Crim/2003/1020.html

the statistical argument was

Professor Meadow was asked if a figure of 1 in 8,543 reflected the risk
of there being a single SIDS within such a family. He agreed that it
was. A table from the CESDI report was placed before the jury. He was
then asked if the report calculated the risk of two infants dying of SIDS
in that family by chance. His reply was: ‘‘Yes, you have to multiply 1 in
8,543 times 1 in 8,543 and I think it gives that in the penultimate paragraph.
It points out that it’s approximately a chance of 1 in 73 million.”

What he was doing was equating the following in the product rule
(Section 1.4 on page 1.4):

P (second child dying of SIDS|first child dying of SIDS) = P (second child dying of SIDS)

which is equivalent to saying

Knowing that the child dies of a [not well understood] disease tells us
nothing about the probability of the second child dying of the same [not
well understood] disease.

Clearly this is ridiculous, because if there is a common source to
the disease, the one death certainly increases the probability of the
second. Such a common source could be something shared in the
environmental or perhaps a genetic disposition in the family for the
disease.

http://www.bailii.org/ew/cases/EWCA/Crim/2003/1020.html
http://www.bailii.org/ew/cases/EWCA/Crim/2003/1020.html
http://www.bailii.org/ew/cases/EWCA/Crim/2003/1020.html
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Prosecutor’s Fallacy

Both of the cases above are examples of what is called the prosecu-
tor’s fallacy. It occurs when someone assumes that the prior prob-
ability of an event is equal to the probability that the defendant is
innocent. A simple example is that “if a perpetrator is known to have
the same blood type as a defendant and 10% of the population share
that blood type; then to argue on that basis alone that the probability
of the defendant being guilty is 90% makes the prosecutors’s fallacy,
in a very simple form.”8 8

Essentially the prosecutor is ignoring the number of people who
match the rare event. Also, although double-deaths by SIDS are rare,
they are much more common than double-murders! One really has to
look at

P (innocence|evidence)

which is not the same as

P (evidence)

2.9 Computer Examples

Coin Flips

from s i e import *

Generate a small list of data...

data=randint ( 2 , s i z e =10)
p r i n t data

[1 0 0 1 0 0 0 1 0 0]

Generate a slightly larger list of data...

data=randint ( 2 , s i z e =30)
p r i n t data

[1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0]

data=randint ( 2 , s i z e = ( 2 0 0 0 , 1 0 ) )
data

array([[1, 0, 1, ..., 1, 0, 0],

[1, 1, 1, ..., 0, 1, 0],

[0, 0, 1, ..., 0, 0, 0],

...,

[0, 0, 0, ..., 1, 1, 0],
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[0, 1, 0, ..., 0, 1, 1],

[0, 1, 1, ..., 1, 0, 1]])

We have here a large collection of numbers (20000 of them!), organized in 2000 rows of 10 columns.
We can sum all of the 20000 values, or we can sum across columns or across rows, depending on what
we want.

sum( data ) # add up a l l of the 1 ’ s

9988

sum( data , a x i s =0) # sum up a l l of the columns

array([1011, 1010, 1001, 1051, 1001, 1008, 962, 990, 976, 978])

sum( data , a x i s =1) # sum up a l l of the rows

array([3, 7, 3, ..., 5, 4, 6])

Typically the hist command makes its own bins, which may not center on the actual count values.
That’s why we call countbins(N), to make bins centered on the counts.

N=sum( data , a x i s =1) # number of heads in each of many f l i p s
h i s t (N, countbins ( 1 0 ) )
x l a b e l ( ’Number of Heads ’ )
y l a b e l ( ’Number of F l i p s ’ )

<matplotlib.text.Text at 0x10856e990>

To get a probability distribution, we divide the histogram result by N.
This distribution is Bernoulli’s equation, or in other words, the binomial distribution.

p(h, 10) =
(

10
h

)
0.5h · 0.510−h
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h=array ( [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 ] )

# or . . .

h=arange ( 0 , 1 1 )

(recall that ** is exponentiation in Python, because the caret (ˆ) was already used for a computer-
sciency role.) The spaces in the equation below are not needed, but highlight the three parts of the
binomial distribution.

p=nchoosek ( 1 0 , h ) * 0 . 5 * * h * 0 .5** (10−h )

h i s t (N, countbins ( 1 0 ) , normed=True )
p l o t ( h , p , ’−−o ’ )
x l a b e l ( ’Number of Heads , $h$ ’ )
y l a b e l ( ’ $p ( h|N=10) $ ’ )

<matplotlib.text.Text at 0x108560290>

Exercise 2.7 You flip a coin five times...

1 What is the probability of flipping 0, 1, 2, 3, 4, and 5 heads each in these
5 flips?

2 Show in a simulation that this matches these probabilities you just found.



3 Random Sequences and Visualization

Now that we understand the rules of probability, and how they are
applied in a number of practical examples, we explore the use of
these rules to sequences of random events. This will produce several
interesting and unintuitive observations, failures of inference, and
the proper ways to handle them. Finally, we examine how visual-
ize both data in general and what we can communicate with such
visualization.

3.1 Coin Flipping

We’ll start with some simple examples of coin flipping, asking some
simple questions, and move to more complex observations and unin-
tuitive conclusions.

Example 3.1 What is the probability of flipping three heads in a row, with
a fair coin?

We can approach this problem in two different ways. The first way,
is a brute-force counting method with the definition of probability for
exclusive events (using Equation 1.2) and the second way makes use
of the other rules of probability. In the first way, we simply outline All possible results from three coin

flips:
1 T T T
2 T T H
3 T H T
4 T H H
5 H T T
6 H T H
7 H H T
8 H H H

every possible combination of three flips, see how many are “three
heads in a row”, as we show in the margin.

Because there is only one case of “H H H” in all eight, the proba-
bility of three heads in a row is

P (three heads in a row) = 1/8

which is an unlikely outcome, but not extremely so (see Table 1.1 on
page 51).

In terms of the rule of probability, we have

P (three heads in a row) = P(H1 and H2 and H3)

where H1 is heads on the first flip, H2 is heads on the second flip,
etc... Because these are independent events (Section 1.4), the probabil-
ity is just the product of the probabilities of the individual events
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(Equation 1.9)

P (three heads in a row) = P(H1 and H2 and H3)

= P(H1)× P(H2)× P(H3)

=
1
2
× 1

2
× 1

2

=
1
8

the same answer as before. Yet again, we see that if there
are multiple ways of arriving at
an answer, that it must yield the
same answer - equivalent states
of knowledge yield equivalent
probability assignments.

Example 3.2 What is the probability of flipping thirty heads in a row, with
a fair coin?

Our intuition will clearly insist that this will be a very small num-
ber, but how small? Our first method, of listing all of the possibilities
gets quite a bit cumbersome with this question. The second method
is quite straightforward

P (thirty heads in a row) = P(H1 and H2 and · · · and H30)

= P(H1)× P(H2)× · · · × P(H30)

=

30 times︷ ︸︸ ︷
1
2
× 1

2
× · · · × 1

2

=

(
1
2

)30

= 0.000000001 (one in a billion!)

This is virtually impossible (Table 1.1).

Example 3.3 What is the probability of flipping two heads in three flips,
with a fair coin?

Our intuition suggests that this should be a reasonably common
occurrence. We address this problem in exactly the same two ways:
first, by counting, the second with the rules of probability. In the
first method, we observe from the table that there are three ways of
getting two heads: “T H H,” “H T H,” and “H H T.” Thus,

P (two heads in three flips) =
3
8

In the second method we write

P (two heads in three flips) =

P ((T1 and H2 and H3) or (H1 and T2 and H3) or (H1 and H2 and T3))

from which we can apply the sum rule for exclusive events (Equa-
tion 1.11) and, like before, the product rule for independent events
(Equation 1.9),
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P (two heads in three flips) =

P(T1 and H2 and H3) + P(H1 and T2 and H3) + P(H1 and H2 and T3)

=

(
1
2
× 1

2
× 1

2

)
+

(
1
2
× 1

2
× 1

2

)
+

(
1
2
× 1

2
× 1

2

)
=

1
8
+

1
8
+

1
8
=

3
8

which is about a 38% chance, slightly unlikely (Table 1.1).

Example 3.4 What is the probability of flipping ten heads in thirty flips,
with a fair coin?

Once the numbers start getting large, our intuition fails, and we
can’t list all the possibilities. In order to proceed, we need to develop
a systematic way of approaching these sorts of problems. Essentially
it comes down to two parts:

1 What is the probability of one particular sequence being considered?

2 How many ways can this type of sequence appear in the process
described in the question?

Point 1 is asking, what is the probability of this particular se-
quence:

H H H H H H H H H H T T T T T T T T T T T T T T T T T T T T

or this sequence:

T T H T T T T H H H H T T T T T H T T H T T T T T T H H T H

Although it is unintuitive, mathematically both of these specific se-
quences have exactly the same probability: each head or tail has equal
probability, is not related to the others, and there are the same num-
ber of them. So we have

P (HHHHHHHHHHTTTTTTTTTTTTTTTTTTTT) =

P (TTHTTTTHHHHTTTTTHTTHTTTTTTHHTH)

=

(
1
2

)30

= 0.000000001 (one in a billion!)

Every single specific length-thirty sequence of heads and tails has the
same probability, one in a billion.

Point 2 is asking, how many sequences are there of thirty heads
and tails where ten of them are heads? Another way of phrasing it is,
given a sequence like:

H H H H H H H H H H T T T T T T T T T T T T T T T T T T T T

how many different ways can I rearrange this sequence and get a
unique sequence?
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Counting the Rearrangements

We are going to determine the answer to our question in small steps. Symbols: A B C D

Boxes:

Choices Remaining Symbols

A B C D
B A C D
C A B D
D A B C

First, we ask,

Example 3.5 How many ways can we rearrange the unique symbols A, B,
C, and D?

To make this intuitive, we set up four empty boxes and we imagine
placing our symbols in the boxes, one at a time. How many choices
do we have? For the first box, we have four choices. For each of these
choices, we’ve removed one of the symbols, and one of the boxes.

Choices Remaining Symbols

A B C D
A C B D
A D B C

B A C D
B C A D
B D A C

C A B D
C B A D
C D A B

D A B C
D B A C
D C A B

Thus, we are left with three remaining symbols for each choice, and
three remaining boxes. For each of the original four choices, we now
have three choices for the second box. This immediately leads to
4× 3 = 12 possibilities by the time we’ve filled two boxes. For each of
these twelve possibilities, there are two symbols remaining and two
boxes. Continuing this logic, we have two choices for the third box,
and then only one choice for the final box. In summary, for each of
the four choices for the first box we have three choices for the second,
two choices for the third, and one for the final box. Thus we havenumber of rearrange-

ments of four different
symbols

 = 4× 3× 2× 1 = 24

In general we have
Number of Rearrangements of N Unique Symbols Number of Rearrangements of N

Unique Symbols

C(N) = N × (N − 1)× · · · × 2× 1

= N!

C(N) = N × (N − 1)× · · · × 2× 1

= N! (3.1)

where we’ve introduced the notation for the factorial of N as N!.

Example 3.6 How many ways can we rearrange the symbols A, A, A, and
D?

Symbols: A A A D
Rearrangements

D A A A
A D A A
A A D A
A A A D

By eye we can see that there are only four rearrangements of these
symbols. How is this different from the previous question with four
symbols? We can imagine going from the first question, with four
unique symbols “A B C D,” and replace both “B” and “C” with “A”
to get it. “BC” and “CB” are different sequences of unique symbols.
However, if we replace “B” with an “A” and “C” with an “A”, both
sequences become the same sequence, namely “AA”. If we try to
blindly apply Equation 3.1, the one for the number of rearrangements
of unique symbols, to the case where there are duplicates, we will
overestimate the number of rearrangements - we are over counting
duplicate subsequences. Further, we can be specific about how much
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we are over counting and thus find a new equation which includes
the possibility of duplicates.

For example, if we have three duplicates in a sequence, the num-
ber of over countings will be the number of possible rearrangements
of three unique symbols, because all of these rearrangements result in
the same sequence of duplicate symbols. Thus, our procedure should
be,

number of rear-
rangements of “A
A A D”

 =

number of rearrange-
ments of four unique
symbols




number of rearrange-
ments of the over-
counted duplicate three
symbols


=

4!
3!

=
4× 3× 2× 1

3× 2× 1
= 4

Example 3.7 How many ways are there of rearranging the symbols “A A
A D D”?

Following the same logic, we have

5! ways of
rearranging
5 unique
symbols︷ ︸︸ ︷

A A A︸ ︷︷ ︸
3! ways of
rearranging
3 duplicates

D D︸︷︷︸
2! ways of
rearranging
2 duplicates

All possible results of rearranging
the symbols “A A A D D”:

1 A A D D A
2 D A A D A
3 A D A D A
4 D A A A D
5 D A D A A
6 A A D A D
7 D D A A A
8 A D D A A
9 A A A D D
10 A D A A D

number of rear-
rangements of
“A A A D D”

 =
5!

3!2!

=
5× 4× 3× 2× 1

(3× 2× 1)× (2× 1)

=
120

6× 2
= 10

Sequences of Heads and Tails

Now we can return to our original question,
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Example 3.8 What is the probability of flipping ten heads in thirty flips,
with a fair coin?

We broke it down into two parts:

P(h = 10, N = 30) = P

one sequence of
10 heads and 20

tails

×


number of re-
arrangements
of a length-30

sequence with
10 “H” and 20

“T”


1 What is the probability of one particular sequence being considered?

P

one sequence of
10 heads and 20

tails

 =

(
1
2

)10
×
(

1
2

)20

=

(
1
2

)30

= 0.00000000093 (one in a billion!)

2 How many ways can this type of sequence appear in the process
described in the question?

Because we have a length-thirty sequence of “H” and “T” with
10 duplicate “H” symbols and 20 duplicate “T,” we have the fol-
lowing number of ways that this could occur (i.e. the number of
rearrangements of these sequences):

number of re-
arrangements
of a length-30

sequence with
10 “H” and 20

“T”


=

30!
10!20!

= 30045015

So the probability of flipping 10 heads in 30 flips is

P(h = 10, N = 30) =
30!

10!20!

(
1
2

)30

= 30045015× 0.00000000093

= 0.028

which is extremely unlikely (Table 1.1).
In general we have
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Probability of flipping h heads and t tails Given the probability Probability of flipping h heads
and t tails Given the probability
of flipping a single heads as 1/2,
and the total number of flips is
N = h + t, we have the following
probability for h heads and t tails:

P(h, t) =
(h + t)!

h!t!
×
(

1
2

)h
×
(

1
2

)t

of flipping a single heads as 1/2, and the total number of flips is
N = h + t, we have the following equivalent forms:

P(h, t) =
(h + t)!

h!t!
×
(

1
2

)h
×
(

1
2

)t
(3.2)

P(h, N) =
N!

h!(N − h)!
×
(

1
2

)h
×
(

1
2

)N−h

P(h, N) =

(
N
h

)
×
(

1
2

)h
×
(

1
2

)N−h

where we have introduced the notation that is sometimes used, called
choose, read as “N choose h,”(

N
h

)
≡ N!

h!(N − h)!

Shown in Figure 3.1 is the probability of flipping h heads in 30

flips, for each value of h from h = 0 (no heads or, in other words, 30

tails) up to h = 30 (all 30 heads). Clearly the most likely value is 15,
but all of the numbers from 12 up to 18 have significant probability.

0 5 10 15 20 25 30
Number of heads

0.00

0.02

0.04

0.06

0.08

0.10
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0.16

P
(h
,N

=
30

)

Figure 3.1: Probability of getting
h heads in 30 flips. Clearly the
most likely value is 15, but all of
the numbers from 12 up to 18 have
significant probability.

Example 3.9 What is the probability of getting 17 or more heads in 30
flips?

Because these are independent events, we can simply sum up the
terms for P(h = 17, N = 30), P(h = 18, N = 30), etc... yielding
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the following, either through direct calculation, or by reading the
Figure 3.1.

P(h ≥ 17, N = 30) = 0.11︸︷︷︸
h=17

+ 0.08︸︷︷︸
h=18

+ 0.05︸︷︷︸
h=19

+ 0.028︸ ︷︷ ︸
h=20

+ 0.013︸ ︷︷ ︸
h=21

+ 0.005︸ ︷︷ ︸
h=22

+ 0.002︸ ︷︷ ︸
h=23

+ (tiny numbers)︸ ︷︷ ︸
h=23,24,25,26,27,28,29,30

= 0.29

which is quite likely!

3.2 Binomial Distribution

The distribution of the possible number of heads, given N flips with
a coin with probability p of flipping heads, is referred to as the Bino-
mial Distribution. It has the form of Equation 3.3, with the “fair coin”
probability, 1/2, replaced with p:

P(h|N, p) =
N!

h!(N − h)!
× ph × (1− p)N−h (3.3)

Probability of flipping h heads and t tails with an unfair coin Probability of flipping h heads and
t tails with an unfair coin Given
the probability of flipping a single
heads as p, and the total number
of flips is N = h + t, we have the
following probability for h heads
and t tails:

P(h, t) =
(h + t)!

h!t!
× ph × (1− p)t

Given the probability of flipping a single heads is, say, p and the total
number of flips is N = h + t, we have the following equivalent forms:

P(h, t) =
(h + t)!

h!t!
× ph × (1− p)t (3.4)

P(h, N) =
N!

h!(N − h)!
× ph × (1− p)N−h

P(h, N) =

(
N
h

)
× ph × (1− p)N−h

where the probability of tails is 1− p.

3.3 Some Philosophical Applications

Streaks

In the previous section we looked at the probability of getting a cer-
tain number of heads in a number of flips. Look at the following two
sequences:

1 HTTHTHHTTHTHTTHHHTHHTTHHTHHTTHTHHTHHTTHTTHHHTHTHTT

2 HHTHHHTTTTTTTHTHTTHTTTHTHTHHTHTTHTTTHHTTTHHHHTHHHH

One of these sequences was generated from actually flipping a coin
50 times. The other one is from a person pretending to flip a coin, and
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Figure 3.2: Probability of getting h
heads in 30 flips given a possible
unfair coin. One coin has p = 0.1,
where the maximum is for 3 heads
(or 1/10 of the 30 flips), but 2

heads is nearly as likely. Another
has p = 0.5, and is the fair coin
considered earlier with a maximum
at 15 heads (or 1/2 of the 30 flips).
Finally, another coin shown as
p = 0.8 where 24 heads (or 8/10 of
the 30 flips) is maximum.

writing down a sequence that they thought would look like a random
flipping of a coin. Which one is which? While many people think
that sequence 1 looks more “random” (i.e. it seems to flip around a
lot), sequence 2 is actually the random sequence.

One of the truly unintuitive things about real random sequences,
as opposed to designed sequences, is that there are long runs or
streaks. Why is this? The general solution is beyond this book but
we can think about it this way. Although a sequence of, say, 5 heads
in a row is very unlikely (P (5 heads in a row) = (1/2)5 = 0.03),
there are many opportunities for such a sequence somewhere within a
sequence of 50. Because of these many opportunities, this raises the
probability from 3% (the probability of 5 heads in a row in 5 flips), to
over 55%, the probability of finding 5 heads in a row somewhere in 50

flips. Streaks of 6 heads in a row occur nearly one third of the time in
50 flips, or over half the time if you consider a run to be either heads
or tails. Even streaks of 9 heads or tails in a row, in 50 flips, are not
extremely unlikely!

Gambler’s Fallacy

When we look at a sequence of real coin flips, like:

• HHTHHHTTTTTTT

and we ask about the probability of flipping heads in the next flip, it
is common to (mistakenly!) reason that, because we’ve seen 7 tails in
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a row, then the next flip is more likely to be heads. However, this is
not the case for two reasons:

1 long streaks are common in completely fair and random sequences
- so observing a streak of 7 tails does not contribute much to one’s
confidence that we are looking at a rigged coin or one that has
changed its probability properties.

2 the process of flipping a coin is independent each time, nearly by
definition, and thus the result of one flip cannot influence the
result of the next flip.1 1 One can imagine a flipping pro-

cedure where the flips are not
independent. Say, you always place
the resulting face (heads or tails)
initially up in a flip, and the you
do not flip particularly vigorously.
Thus, the result of one flip would
be related to the result of the next
flip. However, in nearly all real
cases, people go to great lengths to
avoid this sort of procedure.

The faulty, but intuitive, reasoning goes by the name of the Gam-
bler’s Fallacy and appears in many places. We can ask a question:

How could we tell the difference between a random, independent
sequence and one where the events are not independent, where the
next flip depended on a previous flip?

We’ll have to return to this question later, when we consider model
comparison, but roughly, one would have to look at all pairs of events
to see if one pair (say heads-tails) occurs more frequently (even if
only by a little) than another pair (say heads-heads).

In a total fit of irony, casino slot machines do not produce indepen-
dent winnings - they are programmed so that if you’ve lost many
times, then that machine is a little less likely to lose the next time. In
effect, at gambling houses they train the gamblers in the Gambler’s
Fallacy!

The Hot Hand - Correlations in Random Sequences

Some work by Tversky and Gilovich2 looks at the following issue in 2 A. Tversky and T. Gilovich. The
cold facts about the" hot hand" in
basketball. Anthology of statistics in
sports, 16:169, 2005

the sport of basketball: there are times when it seems as if basketball
players have a “hot hand” - they are on a shooting streak. Tversky
and Gilovich looked at how basketball fans perceived streaks, by hav-
ing them rate sequences of shots as random shooting or streak shooting.
Most (65%) of the respondents classified artificially generated, purely
random sequences as streak shooting. In real data, they discovered that
the actual probability of “making a given shot (i.e. a player’s shoot-
ing percentage) is unaffected by the player’s prior performance.” We
examine this effect in a later section (see Example 9.11 on page 172)
where we explore the quantitative procedure for assessing this con-
clusion. It is enough here to note the large difference between the
perception of the sequence and the likely cause of the sequence, and
thus the need to always be vigilant against faulty perceptions. Tver-
sky and Gilovich insist that “their observations do not tell us any-
thing general about sports, but it does suggest a generalization about
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people, namely that they tend to ’detect’ patterns even where none
exist.”

What we have here, again, is the general perception that long se-
quences are somehow not “random,” when in fact the opposite is the
case. People have a natural tendency to see patterns in random data,
to infer order where there is none, and to ascribe importance to the
appearance of pattern. It is the role of statistical inference in gen-
eral to provide the tools to properly handle the distinction between
random effects and patterns, and to retune our intuitions.

Regression Toward the Mean

There is a peculiar phenomenon referred to as regression toward the
mean, which often is misinterpreted and leads to failures of proper
statistical inference. It can be seen in a simple example. Imagine that
we “test” a number of students by having them guess the results of a
coin flip. Clearly this will be entirely luck, because the coin flip has
no pattern. If a student guesses the results of 50 flips, there will be an
expectation of getting 25 correct. Here we simulate 20 students each
“predicting” the result of 50 flips, the results shown in Table 3.1. The
test is done twice, and we will look at a particular subset presently.
One can, by eye, see that most of the students get around 25 correct -
exactly as expected from random performance.

Now, imagine that we look at the top five coin flip predictors on
the first round. Will they do better or worse in the the second round?
What about the bottom five coin flip predictors? The results of these
two cases are summarized in Table 3.2. The pattern, even in this
small sample, is quite clear:

1 Those that did the best the first time did worse the second (on
average)

2 Those that did the worst the first time did better the second (on
average)

One might be tempted (had you not known that this is artificial data,
and completely random) to interpret this as a causal pattern, e.g.
“the students that did better the first time, grew over-confident the
second time,” “the students that did worse the first time, worked
harder to improve the second time,” etc... This interpretation of the
results by students has been observed in the classroom.3 However, it 3

runs into serious trouble when the data is something like the heights
of children compared to their parents - the tallest parents tend to
have children shorter than they are, the shortest parents tend to have
children taller than they are, a pattern first quantified by Galton in
1869

4. He noted that clearly the children are not trying to be tall, so 4
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Student Total Correct
First Round

Total Cor-
rect Second
Round

1 23 24

2 23 29

3 19 23

4 26 27

5 28 29

6 26 22

7 23 26

8 30 28

9 24 21

10 27 23

11 25 31

12 30 21

13 20 22

14 28 29

15 24 25

16 25 22

17 23 24

18 20 28

19 20 29

20 28 25

Table 3.1: Total Correct Guesses
from Students “Predicting” the
Results of 50 Coin Flips. Shown are
the results of a first round and a
second round of guessing.

Top Five the First Time Bottom Five the First Time

Student Performance the
Second Time

8 Worse
12 Worse
14 Better
5 Better

20 Worse

Student Performance the
Second Time

3 Better
13 Better
18 Better
19 Better
1 Better

Table 3.2: Performance in the Sec-
ond Round of Students “Predicting”
the Results of 50 Coin Flips. Shown
are the results for those students
who performed best in the first
round (left), and those that per-
formed worst in the first round
(right).
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effort is not a good explanation for the pattern.
What is happening here is that, if the process is dominated by luck

or simple random variation, then outliers occur, but are rare. Thus
a particularly high value will likely be followed by a lower value -
closer to the mean. The tendency is to regress toward the mean in pro-
cesses dominated by luck. This can be confused with the Gambler’s
Fallacy discussed earlier, where flipping 3 heads in a row doesn’t
give you any information about flipping another heads - it is not
more likely to be tails. Part of the difference is that we are dealing
with a process that has many possible values, not just two, and thus we
can have a mean value, and outliers.

When each of these ideas is applied to sports, the weather, or
business there are some interesting conclusions.

1 even when the process is entirely random, long streaks occur - and
are often misinterpreted as an increase in the probability of the
event.

2 when a person performs very well at their job (a number of suc-
cessful business decisions, a high batting average, etc...) they will
often do worse the next year - and again many are surprised, and
interpret the result as the person “losing their touch” - when in
fact, they may just have been lucky for a bit, and are now perform-
ing closer to their typical average level.

3 when one has a particularly bad winter, it may be more likely that
the next winter won’t be quite do bad - due entirely to regression
to the mean. It may, however, be part of a larger pattern (e.g. a
large-scale climate oscillation, such as El Niño) and the probability
of another bad winter might be higher. In order to tell the differ-
ence, we need to construct reasonable models of the phenomena,
test those models with predictions, and apply those models into
the future. At each step, we need to be careful not to jump to the
conclusion of the existence of a pattern too quickly.

3.4 Visualization of Data

There are two main methods of visualizing data, and several others
that are related to these methods. In this section we introduce just
two, histograms and scatter plots, and we will use these throughout
the text.

Histograms

Histograms are a way of summarizing data, when presenting the
entire data set is impractical, or where some understanding of the
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data is made clearer by summarizing. The histogram plot is done
with the following steps: Another advantage to learning

to understand how to generate
histograms is that it alerts you
to the possible abuses of these
plots. These abuses can be simple
mistakes, which end up giving a
misleading message, or a deliberate
deception. Either way, a proper
understanding of the process helps.

1 Choose a number of bins to divide the data.

2 Count up the data that fall into each bin

3 Make a bar plot, or a scatter plot to present the data.

The following is an example with a small data set. The process of
binning and counting is often done by computer, but it is instructive
to perform the process by hand a few times in order to understand
what the results are.

Table 3.3 shows a collection of 106 heights (in centimeters) of the
male students in a class5. As a collection of numbers it is relatively 5

opaque, but as a histogram it is clearer.

177.8 160.0 165.0 182.88 175.0 167.0
182.88 190.5 177.0 190.5 180.34 180.34

184.0 172.72 175.26 167.0 180.0 180.0
190.0 182.5 185.0 171.0 172.0 180.34

180.0 170.0 200.0 190.0 170.18 179.0
182.0 171.0 177.8 175.26 187.0 183.0
180.0 176.0 185.42 176.5 167.64 179.0
183.0 179.0 190.0 165.0 187.0 170.0
180.0 180.34 190.5 185.0 193.04 184.0
177.0 180.0 175.26 180.34 178.5 187.96

178.0 175.26 189.0 182.88 170.0 180.0
185.0 187.96 185.42 195.0 172.72 180.34

173.0 187.96 187.0 168.0 191.8 177.0
189.0 180.34 182.88 172.72 172.0 170.0
175.0 168.0 165.0 173.0 196.0 179.1
180.0 176.0 154.94 174.0 179.1 160.0
165.0 165.0 170.0 185.0 188.0 171.0
185.0 185.0 180.34 183.0

Table 3.3: 106 Male Student Heights
(in cm) from a Survey.
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From this histogram, we can immediately observe several quantities
which summarize their data:

1 The average value (around the middle) should be around 175 cm.
The actual value can be calculated from the data, as

x̄ =
177.8 + 160.0 + · · ·+ 180.34 + 183.0

106
= 178.83

2 The range of the data is around 155 cm up to about 205 cm. Again
we can be more precise, and find the minimum of the data (154.94

cm) and the maximum (200 cm) but the histogram picture yields
an approximate value instantly.

3 The values are roughly symmetric about the mean (i.e. average)
value. This can give us a clue concerning how to model the data.

What is quite clear is that it is far easier to deal with a histogram, as
above, than find the same information from the table of numbers.

Too Few Bins Plotting the same histogram with too few bins might
look like:
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Clearly all the information is washed out.

Too Many Bins Plotting the same histogram with too many bins
might look like:
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We lose any of the summary information here, where we essen-
tially have one bar for each data-point.

Scatter Plots

A scatter plot is used to explore the relationship between two values.
For example, in the survey of male students, in addition to height the
students also measured the width of their writing hand viewed as a
histogram, here
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However, due to the possibility that these two variables could be
related, it makes more sense to make a scatter plot. In such a plot, one
designates one variable as “x” and another as “y,” and places a single
dot for each pair of values in the data set. Thus, each dot on the plot
corresponds to height and hand-width for a single student.
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What we can see here, which was obscured with a histogram, is
the relationship between these values - for the taller students, their
hands are wider. We will explore quantifying this relationship later,
but much can be done by eye using a scatter plot.
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3.5 Computer Examples

This section summarizes how to make histograms and scatter plots
with the computer software.

Histograms

from s i e import *

Load a sample data set, and select only the Male data...

data=load_data ( ’ data/survey . csv ’ )
male_data=data [ data [ ’ Sex ’ ]== ’ Male ’ ]

select only the height data, and drop the missing data (na)...

male_height=male_data [ ’ Height ’ ] . dropna ( )

make the histogram

h i s t ( male_height , bins =20)
x l a b e l ( ’ Height [cm] ’ )
y l a b e l ( ’Number of People ’ )

<matplotlib.text.Text at 0x1085728d0>

Scatter Plot

from s i e import *

Load a sample data set, and select only the Male data...
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data=load_data ( ’ data/survey . csv ’ )
male_data=data [ data [ ’ Sex ’ ]== ’ Male ’ ]

select only the height and the width of writing hand data, and drop the missing data (na)...

subdata=male_data [ [ ’ Height ’ , ’Wr.Hnd ’ ] ] . dropna ( )
height=subdata [ ’ Height ’ ]
wr_hand=subdata [ ’Wr.Hnd ’ ]

plot the data

p l o t ( height , wr_hand , ’ o ’ )
y l a b e l ( ’ Writing Hand Span [cm] ’ )
x l a b e l ( ’ Height [cm] ’ )

<matplotlib.text.Text at 0x1085774d0>





4 Introduction to Model Comparison

A model1 as we use the term in this book is a specific description of a 1 A similar term is hypothesis, and
model comparison would then be
hypothesis testing. We don’t choose
to use that term, partly because of
the colloquial use of hypothesis as
a kind of “guess,” but also because
hypothesis testing in some treat-
ments focus on true/false tests of
hypotheses which can lead to some
significant misunderstandings. The
use of models implies the possibil-
ity of multiple (i.e. more than two)
models.

possible state of nature. This is in contrast to an actual state of nature,
which we practically never have access to. We can never know any-
thing with 100% certainty, and must therefore be open to alternate
possible explanations, or models, describing our observations. For
example, in medicine such models could include “I have lung can-
cer,” “I have pneumonia,” and “I have a cold.” In physics, models
could include “the Earth moves around the Sun” and “the Sun moves
around the Earth.” We can imagine many possible models that are
consistent with the observed data, and our job in doing statistical in-
ference is to determine the probabilities of our models given the data
we observe. In our notation, what we are always looking for is

P(model|data) (4.1)

We will explore model comparison through a series of examples.

4.1 The High/Low Deck Game

In this example we use a simple card game as a platform for dis-
cussing model comparison in general. We start with two atypical
decks of cards called the High Deck and the Low Deck (Figures 4.1
on page 96 and 4.2 on page 96 respectively). The game goes as fol-
lows.

You’re handed one of the two decks, but you don’t know which. First,
you draw the top card and note the value. Second, you replace the
card and reshuffle the deck2. You repeat this procedure of drawing, 2 Although we could make a game

without replacement, which may be
simpler to implement, the version
of the game with reshuffling will
help with an example later.

noting, and reshuffling for as many turns as you need. The goal is to
determine which of the the two decks (High or Low) you are in fact
holding in your hand.

What does our intuition say?

We start by exploring our intuitions, before we do anything math-
ematically. Thus, we are in a position to check to see if the math is
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Figure 4.1: High Deck - 55 Cards
with ten 10’s, nine 9’s, etc... down
to one Ace. Aces are equivalent to
the value 1.

Figure 4.2: Low Deck - 55 Cards
with ten Aces, nine 2’s, etc... up to
one 10. Aces are equivalent to the
value 1.
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reasonable before we use the same math in areas where our intuition
is not as strong. Imagine we draw only one card, and it is a 9. Intu-
ition suggests that this constitutes reasonably strong evidence toward
the belief that we’re holding the High Deck. If we then (as the pro-
cedure states) place the 9 back in the deck, reshuffle and then draw
a 7 we can be more strongly convinced that we are holding the High
Deck. Repeating the reshuffle, and then drawing a 3 would make
us a little less confident in this conclusion, but still quite certain. In
this way we can sense how drawing different cards pushes our belief
around, depending on how often that card comes up in the different
decks.

Before the data - the prior

Before we take any data, we need to quantify our state of knowledge
concerning all of the models that we are considering. In this case it
is quite simple, because there are two models (High Deck and Low
Deck), and we have been given no information about whether either
is more common. With no such information, it is equivalent to a coin
flip - we assign equal probabilities to both models before we see data,
also known as the prior probabilities3. 3 The prior is sometimes mischar-

acterized as simply our guess, or
some other completely subjective
assessment of our knowledge. In
fact in this example, and many
others, we can make the positive
case for equal probabilities given
the state of our knowledge. This
can be quantified with the concept
of entropy, which is beyond this
chapter.

P(H) = 0.5

P(L) = 0.5

Surely this assessment will change after we see data, but that is the
rest of the problem.

The “easy” question - the likelihood

Although our ultimate goal is to infer the type of deck from the cards
that we draw from it, we can start looking at an easier part of this
question which serves as a first step toward the more challenging,
and interesting goal. That question is the following,

Example 4.1 What is the probability of drawing a 9, given that we know
that we’re holding the High Deck?

This related question is written

P(data = 9|H)

where data = 9 means that we have observed (i.e. drawn) one 9.
This question is “easy” in the sense that it is simply related to the
properties of the High Deck: the number of 9’s and total number
of cards. If you know that you have the high deck, then you know
there are nine 9’s in that deck out of 55 cards, and thus we have the
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probability of drawing one 9, given that we are holding the High
Deck, is

P(data = 9|H) =
9
55

We give this the name likelihood4, and is simply the probability that 4 The term likelihood is a poorly
chosen word. In English, this word
is nearly synonymous with the
word probability and thus easily
leads to confusion. We could try to
use a different term, like consequent
probability or generative likelihood
to stress the idea that the likelihood
is the probability that the data we
observe could be generated or could
be a consequence of the particular
model. However, we’d be going up
against two centuries of continued
use of the term likelihood and thus
would probably increase confusion
rather than decrease it.

the data could be the result of a known model. It is also the first part
of the top of Bayes’ Rule, Equation 1.14 on page 47.

Applying the Bayes’ recipe

Here we introduce for the first time a recipe we will follow for all
model comparison examples.

Now that we have our intuition, and we have the likelihoods, we
can address the math. The two models are:

H ≡ “We’re holding the High Deck”

L ≡ “We’re holding the Low Deck”

and the initial data is

data ≡ “We’ve drawn one card, and it is a 9”

According to Equation 4.1 on page 95 we are looking for the two
probabilities:

P(H|data = 9)

P(L|data = 9)

which are related to the prior and the likelihood via Bayes’ Rule (Equa-
tion 1.14):

P(H|data = 9) =
P(data = 9|H)P(H)

P(data = 9)

P(L|data = 9) =
P(data = 9|L)P(L)

P(data = 9)

To calculate actual numbers, we apply the Bayes’ Recipe to this
problem,

1 Specify the prior probabilities for the models being considered

P(H) = 0.5

P(L) = 0.5

2 Write the top of Bayes’ Rule for all models being considered

P(H|data = 9) ∼ P(data = 9|H)P(H)

P(L|data = 9) ∼ P(data = 9|L)P(L)
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where we are using the symbol ∼ to denote proportionality or re-
lated to. Essentially, by calculating the top of Bayes’ Rule first, the
numbers are not equal to the final (i.e. posterior) probabilities but
must be rescaled to make sure that they add up to 1. This is done
in the final step. Up until that rescaling, we use the symbol ∼ and
think of it as related to.

3 Put in the likelihood and prior values

P(H|data = 9) ∼ 9
55
× 0.5 = 0.082

P(L|data = 9) ∼ 2
55
× 0.5 = 0.018

4 Add these values for all models

K = 0.082 + 0.018 = 0.1

5 Divide each of the values by this sum, K, to get the final probabili-
ties

P(H|data) = 0.082/0.1 = 0.82

P(L|data) = 0.018/0.1 = 0.18

From which we can conclude that drawing a 9 does indeed consti-
tute reasonably strong evidence toward the belief that we’re holding
the High Deck - the probability of us holding the High Deck, given
the data, is 0.82.

Drawing the next card

So, when we draw a 7 next (after reshuffling), our intuition suggests
that we’d be more confident that we’re holding the High Deck. Re-
peating our recipe we have

The two models are:

H ≡ “We’re holding the High Deck”

L ≡ “We’re holding the Low Deck”

and data is

data ≡
{

“We’ve drawn one card, and it is a 9, replaced
and reshuffled, and then drawn a 7”

According to Equation 4.1 we are looking for the two probabilities:

P(H|data = 9 then a 7)

P(L|data = 9 then a 7)
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which are related to the prior and the likelihood via Bayes’ Rule (Equa-
tion 1.14):

P(H|data = 9 then a 7) =
P(data = 9 then a 7|H)P(H)

P(data = 9 then a 7)

P(L|data = 9 then a 7) =
P(data = 9 then a 7|L)P(L)

P(data = 9 then a 7)

To calculate actual numbers, we apply the Bayes’ recipe to this
problem,

1 Specify the prior probabilities for the models being considered

P(H) = 0.5

P(L) = 0.5

2 Write the top of Bayes’ Rule for all models being considered

P(H|data = 9 then a 7) ∼ P(data = 9 then a 7|H)P(H)

P(L|data = 9 then a 7) ∼ P(data = 9 then a 7|L)P(L)

3 Put in the likelihood and prior values As a reminder, we are performing
this next draw having shuffled
the first draw back into the deck.
Although somewhat artificial, it is
useful for a later example. If we
had simply set the first card asside,
the value of the likelihood would
account for the removal of one more
card, and would thus be 9

55 × 7
54 for

the high deck and 2
55 × 4

54 for the
low deck. Note the denominators.

P(H|data = 9 then a 7) ∼ 9
55
× 7

55
× 0.5 = 0.0104

P(L|data = 9 then a 7) ∼ 2
55
× 4

55
× 0.5 = 0.0013

4 Add these values for all models

K = 0.0104 + 0.0013 = 0.0117

5 Divide each of the values by this sum, K, to get the final probabili-
ties

P(H|data = 9 then a 7) = 0.0104/0.0117 = 0.889

P(L|data = 9 then a 7) = 0.0013/0.0117 = 0.111

which again matches our intuition - we’re more confident that
we’re holding the High Deck, now with probability 0.889 increased
from 0.82 when we just observed the 9.

Prior information or not?

In the above example, we started with a prior probability of holding
the High Deck at P(H) = 0.5, because we had no information other
than that there were two possibilities. We then observed a 9, and
updated the probability to 0.82, and then observed a 7, and further
updated the probability to 0.889 - making it more likely that we were
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holding the High Deck. One of the basic tenets of probability the-
ory is that if there is more than one way to arrive at an answer, one
should arrive at the same answer.5 In the above, we calculated the 5 E. T. Jaynes uses the principle that

“if there is more than one way to
arrive at an answer, one should
arrive at the same answer” to help
derive the rules of probability
from first principles. Failures of
this principle result in paradoxes.
This principle is also applied
in Section 2.4 for the birthday
problem.

probability of holding the High Deck given the observed data

data ≡
{

“We’ve drawn one card, and it is a 9, replaced
and reshuffled, and then drawn a 7”

and prior information

prior ≡ “We know there are only two decks.”

An equivalent situation is found after our first draw, after we’ve
observed the 9, and we’re about to draw our second card. In this case
we have the prior information:

prior ≡


“We know there are only two decks, and then
we draw one card and it is a 9, replace it and
reshuffle.”

and observed data:

data ≡ “We’ve drawn one card and it is a 7”

Mathematically, we apply the Bayes’ recipe, but with the different
prior information

1 Specify the prior probabilities for the models being considered

P(H, 9) = 0.82

P(L, 9) = 0.18

2 Write the top of Bayes’ Rule for all models being considered

P(H|data = 9 then a 7) ∼ P(data = 7|H)P(H, 9)

P(L|data = 9 then a 7) ∼ P(data = 7|L)P(L, 9)

3 Put in the likelihood and prior values

P(H|data = 9 then a 7) ∼ 7
55
× 0.82 = 0.104

P(L|data = 9 then a 7) ∼ 4
55
× 0.18 = 0.013

4 Add these values for all models

K = 0.104 + 0.013 = 0.117
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5 Divide each of the values by this sum, K, to get the final probabili-
ties

P(H|data = 9 then a 7) = 0.104/0.117 = 0.889

P(L|data = 9 then a 7) = 0.013/0.117 = 0.111

yielding the same result.
In other words our updated probabilities from the first draw can be

seen as our prior probabilities for the subsequent draws. Thus, Bayes’
Rule describes how we update our knowledge with new evidence, or
in other words, learning.

4.2 Multiple Hypotheses

We start this section with an example.

Example 4.2 What is the probability that you are holding one of either the
High or the Low Deck having drawn five 9’s in a row from that deck?

We have observed the following data:

data ≡


“We’ve drawn one card, and it is a 9, replaced
and reshuffled, redrawn and observed another
9, repeated this procedure and observed three
more 9’s, for a total of five 9’s in a row.”

Technically, drawing 5 9’s in a row should give us really strong con-
fidence that you are drawing from the High Deck, because we would
have

1 Specify the prior probabilities for the models being considered

P(H) = 0.5

P(L) = 0.5

2 Write the top of Bayes’ Rule for all models being considered

P(H|data = 5 9’s in a row) ∼ P(data = 5 9’s in a row|H)P(H)

P(L|data = 5 9’s in a row) ∼ P(data = 5 9’s in a row|L)P(L)

3 Put in the likelihood and prior values

P(H|data = 5 9’s in a row) ∼ 9
55
× 9

55
· · · 9

55︸ ︷︷ ︸
5 times

×P(H)

∼
(

9
55

)5
× 0.5

= 0.0000587

P(L|data = 5 9’s in a row) ∼
(

2
55

)5
× 0.5

= 0.0000000318
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4 Add these values for all models

K = 0.0000587 + 0.0000000318 = 0.0000587318

5 Divide each of the values by this sum, K, to get the final probabili-
ties

P(H|data = 5 9’s in a row) =
0.0000587

0.0000587318
= 0.99946

P(L|data = 5 9’s in a row) =
0.0000000318
0.0000587318

= 0.00054

which is fantastically on the side of the high deck, even though we
might start getting suspicious in this situation.

Example 4.3 What is the probability that you are holding one of either the
High or the Low Deck having drawn m 9’s in a row from that deck, where m
stands for a number (m = 1, 2, 3, · · ·)?

In general, if we look at m 9’s in a row, where m could be 1, 2, 3,
etc..., we can see this following the Bayes’ Recipe

1 Specify the prior probabilities for the models being considered

P(H) = 0.5

P(L) = 0.5

2 Write the top of Bayes’ Rule for all models being considered

P(H|data = m 9’s in a row) ∼ P(data = m 9’s in a row|H)P(H)

P(L|data = m 9’s in a row) ∼ P(data = m 9’s in a row|L)P(L)

3 Put in the likelihood and prior values

P(H|data = m 9’s in a row) ∼ 9
55
× 9

55
· · · 9

55︸ ︷︷ ︸
m times

×P(H)

∼
(

9
55

)m
× 0.5

P(L|data = m 9’s in a row) ∼
(

2
55

)m
× 0.5

4 Add these values for all models

K =

(
9

55

)m
× 0.5 +

(
2

55

)m
× 0.5

5 Divide each of the values by this sum, K, to get the final proba-
bilities This step is easiest done in a table (Table 4.1), because the
resulting expression is pretty messy.



104 statistical inference for everyone

m P(H|data) P(L|data)

1 0.81818 0.18182
2 0.95294 0.047059
3 0.98915 0.010855
4 0.99757 0.0024327
5 0.99946 0.00054163
6 0.99988 0.00012041
7 0.99997 0.000026761
8 0.99999 0.0000059470

Table 4.1: Drawing m 9’s in a row,
from either a High Deck or Low
Deck.

It is clear from Table 4.1 that after drawing five 9’s using our pro-
cedure, it should be extraordinarily likely that we are holding the
High Deck. However, after a certain number of 9’s observed, some-
thing starts to bother us. Perhaps not after five 9’s, but what if the
procedure were repeated and we drew ten 9’s in a row? Or perhaps
twenty 9’s. At some point, we’d refuse to believe this is the High
Deck because, although it was true that there are more 9’s in the
High Deck, there are many more other cards in the High Deck that we
should see. What do we do in this case?

Example 4.4 What is the probability that you are holding one of either the
High, Low, or Nines Deck having drawn m 9’s in a row from that deck?

The proper thing to do is to introduce a new model, say, a Nines
deck. Clearly this model should have a very low prior probability, What is interesting here is that

once we admit that there are many
possible models we could consider,
we realize that we have these
models in our head all the time,
or we construct them as we need
them. Every model comparison
is a multiple model comparison,
with most of the models with very
low prior probabilities that our
brain naturally suppresses until
needed. Mathematically, we need to
unsuppress them as needed.

because we didn’t even consider it before we saw the streak of 9’s.
Let’s say that we assign the prior probability for the Nines deck to
be a one in a million. To make all of the prior probabilities add up to
1, then the prior probabilities for the High and Low Deck must be a
little less than 0.5. After that, we simply apply the Bayes’ Recipe as
before

1 Specify the prior probabilities for the models being considered

P(N) =
1

1, 000, 000
= 0.000001

P(H) = 0.4999995

P(L) = 0.4999995

2 Write the top of Bayes’ Rule for all models being considered

P(N|data = m 9’s in a row) ∼ P(data = m 9’s in a row|N)P(N)

P(H|data = m 9’s in a row) ∼ P(data = m 9’s in a row|H)P(H)

P(L|data = m 9’s in a row) ∼ P(data = m 9’s in a row|L)P(L)
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3 Put in the likelihood and prior values

P(N|data = m 9’s in a row) ∼ 1× P(N) = 0.000001

P(H|data = m 9’s in a row) ∼ 9
55
× 9

55
· · · 9

55︸ ︷︷ ︸
m times

×P(H)

∼
(

9
55

)m
× 0.4999995

P(L|data = m 9’s in a row) ∼
(

2
55

)m
× 0.0.4999995

4 Add these values for all models

K = 0.000001 +
(

9
55

)m
× 0.4999995 +

(
2

55

)m
× 0.4999995

5 Divide each of the values by this sum, K, to get the final proba-
bilities Again, this step is easiest done in a table or, even better, a
picture (Figure 4.3).
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Figure 4.3: Drawing a number of
9’s in a row, possibly from a High,
Low, and Nines deck.

We have a clear picture here in Figure 4.3. As we initially draw
9’s, our confidence that we’re holding the High Deck goes up, at
the expense of our confidence that we’re holding the Low Deck. At
a certain point (around six 9’s in our example), our confidence in
the High Deck starts to drop and we become more confident that
something odd is happening, and our previously ignored model of
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the Nines deck becomes more likely. Eventually, this new model is
the one in which we are the most confident.

Imagine further that if, after drawing ten 9’s in a row we draw a 1.
What do we do then? The likelihood for the Nines deck goes to zero
instantly - the probability of drawing a 1 from a Nines deck is zero,
P(1|N) = 0. Are we left again with the original two models, High
and Low Deck? No! We would then introduce other models, perhaps
something like a Mostly Nines Deck, or perhaps a High Deck with a
weird shuffling procedure, or perhaps others. No matter how many The creative part of science is not

in the calculations performed, but
in the generation of new and useful
models. Until we come up with a
better model for our data we make
do with the ones that we have, all
the while being aware that a better
model may come into play later.
Newton’s Theory of Gravity was
used for over 200 years, even when
there was known data that made
it less likely, until it was replaced
by Einstein’s Theory of Gravity.
Newton’s Laws, however, are still
used in nearly all gravitational
calculations because it is “good
enough” and is a lot easier to work
with practically.

models one has, the recipe is still the same. It is important to realize
that in any model comparison case, there are always other models
that could be brought to bear on the problem, perhaps with low prior
probability. Simply showing that a model is consistent with a set of
data does not insure against the possibility that another model could
be better, if we could only think of it.

Exercise 4.1 Complete the example demonstrating the updated probabil-
ities for the High and Low Deck, having drawn a 9, 7, and a 3. Compare
with the case of drawing just the 9 and the 7, and discuss how it matches
your intuition.

Exercise 4.2 Repeat the analysis of the sequence of 9’s drawn in a row
with an added hypothesis of a deck with one hundred 9’s and one 8. Discuss
the results. Demonstrate what happens to the probabilities for all of the
hypotheses after drawing one 8, after ten 9’s in a row. Discuss.

Exercise 4.3 I tell you that I have a coin that could have both sides heads,
both sides tails, or a normal single-heads single-tails coin.

1 Before seeing the data, what would be a reasonable prior probability for
the three hypotheses H0 (no-heads), H1 (one head), and H2 (two heads)?

2 Would this have been different if you had simply been given a coin by a
friend to flip to see who has to do the dishes? Why or why not?

3 Now I flip the coin once, and get a heads. Write down the likelihood of
this data given each of the models. In other words, what are the values of:

• P (data=1 heads|H0)

• P (data=1 heads|H1)

• P (data=1 heads|H2)

4 Apply Bayes’ Recipe, and determine the probability of each of these three
models given this data. In other words, what are the values of:

• P (H0|data=1 heads)

• P (H1|data=1 heads)
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• P (H2|data=1 heads)

5 Apply this recipe for the case of observing 3 heads in a row.





5 Applications of Model Comparison

This chapter presents several applications of the model comparison
concepts introduced in Chapter 4 (Introduction to Model Comparison).

5.1 Disease Testing

Let’s imagine there is a rare, one in a million, disease that is lethal
but does not have many outward symptoms at first. A new test
boasts 99.9% accuracy, so you go to get tested, and receive the bad
news that you test positive for the disease. Should you be devastated
by the news? What is the probability that you actually have the dis-
ease? We are looking at two, quite different, probabilities here. In the
first case, we have the claims of the test which state that if you have the
disease, the probability that the test will be positive is 0.999, or, if you have
the disease, test will discover that fact 99.9% of the time. In the second
case we have your concern which is, if you test positive for the test, what
is the probability that you have the disease. In our notation this is:

P(positive test|disease) = 0.999 (claim from test)

P(disease|positive test) = ? (your concern)

These two are related by Bayes’ Rule (Equation 1.14).
The Bayes’ Recipe proceeds as follows

1 Specify the prior probabilities for the models being considered

The models we have are simply “have the disease” and “don’t
have the disease”. The prior probabilities for these two come from
the prevalence of the disease in the population, before you get
tested. Since this is a “one in a million” disease, we have

P (disease) =
1

1, 000, 000

P (no disease) =
999, 999

1, 000, 000

2 Write the top of Bayes’ Rule for all models being considered
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The top of Bayes’ Rule comes down to, given the truth of the
model (i.e. either with or without the disease), what is the proba-
bility of getting the data (i.e. the positive or negative test result).
This is measured by how good the test is. In many medical applica-

tions, the false positive rate
(P (positive test|no disease)) is not
always equal to the false negative
rate (P (negative test|disease)), so to
say that a test is 99.9% accurate is
actually incomplete - one needs to
specify both rates of effectiveness.
In this case, we are assuming that
they are the same.

P (positive test|disease) = 0.999

and

P (positive test|no disease) = 0.001

So the top of Bayes’ Rule looks for both models looks like:

P (disease|positive test) ∼ P (positive test|disease)× P (disease)

∼ 0.999× 1
1, 000, 000

= 9.99 · 10−7

P (no disease|positive test) ∼ P (positive test|no disease)× P (no disease)

∼ 0.001× 999, 999
1, 000, 000

= 9.99 · 10−4

3 Add these values for all models

K = 9.99 · 10−7 + 9.99 · 10−4 = 0.000999999

4 Divide each of the values by this sum, K, to get the final probabili-
ties

P (disease|positive test) =
9.99 · 10−7

0.000999999
= 0.1%

P (no disease|positive test) = 99.9%

Which means that, overwhelmingly, if you have a rare one-in-a-
million disease, you are very unlikely to have it even given a 99.9%
accurate positive test for it! This is a seriously unintuitive result, so it is
helpful to visualize it in another way to build your intuition.

One way to see this result is to visualize it, as in Figure 5.1. Here,
the numbers are a bit smaller - the disease is 1 out of 200 in a popu-
lation of 3000, and the test is 99% accurate. This means about 15 sick
people and about 2985 healthy people. If all of the sick people test
positive, and 1% of the healthy people test positive due to the 99%
accuracy, we would have 15 sick and 29 healthy people who all test
positive. Even in this case, with much smaller numbers, we see that
getting a positive test alone does not imply that it is likely you have
the disease. It depends on the rarity of the disease (the more rare, the



applications of model comparison 111

less likely) and the false positive rate (the number of healthy people
who test positive anyway). This will vary depending on the disease
and the test, but can lead to this unintuitive result, and thus can lead
one to make poor medical decisions.

Has the Disease

Test Positive

Figure 5.1: Rare disease and testing.
Shown is a population of 3000

where 1 in every 200 people have
the disease (large circles). A test
which is 99% effective is applied
to everyone in the population, and
the positive test results (i.e. the
test says that you have the disease)
are shown ask small black dots.
Notice that although nearly all of
those that have the disease test
positive (a small black dot inside
a large circle), there are many
false positives (black dot in an
empty square) - healthy people
that test positive for the disease.
Even though the test is quite good,
there are many more healthy people
and 1 out of 100 of them will
erroneously test positive.

Consequences

This sort of disease testing has serious consequences, especially for
rare diseases with tests that aren’t precise. In the book “The Theory
That Would Not Die: How Bayes’ Rule Cracked the Enigma Code,
Hunted Down Russian Submarines, and Emerged Triumphant from
Two Centuries of Controversy” by Sharon McGrayne there is a dis-
cussion concerning the 2009 advice from the U.S. government task
force that “most women in their forties not to have annual mammo-
grams.” (emphasis mine) According to McGrayne,

Thus the probability that a woman who tests positive has breast cancer
is only 3%. She has 97 chances out of 100 to be disease free. None of
this is static. Each time more research data become available, Bayes’
rule should be recalculated. As far as Bayes is concerned, universal
screening for a disease that affects only 4/10 of 1% of the population
may subject many healthy women to needless worry and to additional treat-
ment which in turn can cause its own medical problems. In addition, the
money spent on universal screening could potentially be used for other
worthwhile projects. Thus Bayes highlights the importance of improv-
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ing breast cancer screening techniques and reducing the number of
false positives.1 (emphasis mine) 1 Sharon McGrayne. The Theory

That Would Not Die: How Bayes’
Rule Cracked the Enigma Code,
Hunted Down Russian Submarines,
and Emerged Triumphant from Two
Centuries of Controversy. Yale
University Press, 2011. ISBN
0300169698

Thus the proper application of probability theory allows us to
separate true but unintuitive things from this which only seem true
and intuitive but are in fact false.

5.2 M&M’s

From various sources I have found the fraction of chocolate M&Ms
candies are red. The sources found are the following:

• Source A: 28% of M&Ms are red, 20% of M&Ms are orange.

• Source B: 20% of M&Ms are red, 10% of M&Ms are orange

• Source C: 13% of M&Ms are red, 21% of M&Ms are orange.

From actually counting of a bag of M&Ms I found the following
data:

• 3 red M&Ms in 17 total (R = 3, N = 17)

The question is, which source can we trust the most? Here we follow
Bayes’ recipe,

• Specify the prior probabilities for the models being considered

P(A) = P(B) = P(C) = 1/3

• Write the top of Bayes’ Rule (i.e. likelihood × prior) for all models
being considered

P(A|R = 3, N = 17) ∼
(

17
3

)
0.283(1− 0.28)17−3 × 1

3

P(B|R = 3, N = 17) ∼
(

17
3

)
0.203(1− 0.20)17−3 × 1

3

P(C|R = 3, N = 17) ∼
(

17
3

)
0.133(1− 0.13)17−3 × 1

3

• Add these values for all models, to get K

P(A|R = 3, N = 17) ∼ 0.05006

+

P(B|R = 3, N = 17) ∼ 0.07975

+

P(C|R = 3, N = 17) ∼ 0.07087

K = 0.20068
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• Divide each of the values by this sum, K, to get the final probabili-
ties

P(A|R = 3, N = 17) = 0.05006/0.20068 = 0.250

P(B|R = 3, N = 17) = 0.07975/0.20068 = 0.397

P(C|R = 3, N = 17) = 0.07087/0.20068 = 0.353

So we are most confident in Source B, although none of them
really changed by a lot - there is no clear winner.

Updating with other data

• 5 orange M&Ms in 16 total (G = 5, N = 16)

Again, we follow the same recipe, starting with out posterior prob-
abilities from above as our starting prior probabilities - they are prior
to the new data.

• Specify the prior probabilities for the models being considered

P(A|old data) = 0.250

P(B|old data) = 0.07975/0.20068 = 0.397

P(C|old data) = 0.07087/0.20068 = 0.353

• Write the top of Bayes’ Rule (i.e. likelihood × prior) for all models
being considered

P(A|G = 5, N = 16 and old data) ∼
(

16
5

)
0.205(1− 0.20)16−5 × 0.250

P(B|G = 5, N = 16 and old data) ∼
(

16
5

)
0.105(1− 0.10)16−5 × 0.397

P(C|G = 5, N = 16 and old data) ∼
(

16
5

)
0.215(1− 0.21)16−5 × 0.353

• Add these values for all models, to get K

P(A|data) ∼ 0.0300

+

P(B|data) ∼ 0.00544

+

P(C|data) ∼ 0.0471

K = 0.08254
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• Divide each of the values by this sum, K, to get the final probabili-
ties

P(A|data) = 0.0300/0.08254 = 0.363

P(B|data) ∼ 0.00544/0.08254 = 0.0659

P(C|data) ∼ 0.0471/0.08254 = 0.5706

Given this new data, we update our state of knowledge, and we’re
much more confident that Source C is the best one. It is clear that
Source B is unlikely, with a probability of only about 6.5%. We could
extend this example with more data, and more models if we’d like.

5.3 Psychic Octopi

There was a German octopus named Paul2 who was claimed to be 2 Paul the octopus, July 2012. URL
http://en.wikipedia.org/wiki/

Psychic_octopus
psychic during his lifetime. He was given this designation because
he was supposedly able to pick the result of World Cup matches
before they occurred3. His impressive results, across 2 years, shown 3 The basic procedure for Paul to

make a “prediction” was for his
trainers to present two food dishes,
labeled with a flag representing
the two countries, respectively,
competing. Whichever food dish
Paul chose first was his prediction
for the winner of the game.

in Figure 5.2 can be summarized as follows:

data ≡ 12 out of 14 correctly predicted

The question we have to ask is, is this data strong evidence for a
psychic octopus? In order to have a well-posed problem we need the
following three components:

1 a set of hypotheses, or models, to compare - we need at least two,
otherwise the question is meaningless

2 for each model, an equation denoting the likelihood, or in other
words, how probable is the data given the particular model

3 a specification of the prior probability, or in other words, how
likely was our model before we saw the data

Making a Well Posed Problem

We are interested in the probability of this octopus being psychic,
given this data, or

P(psychic|data)

which really is an example of a model comparison, or hypothesis
testing. In any kind of model comparison, we need to have multiple

http://en.wikipedia.org/wiki/Psychic_octopus
http://en.wikipedia.org/wiki/Psychic_octopus
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Figure 5.2: The full results
of the predictions of Paul
the Octopus, reproduced from
en.wikipedia.org/wiki/Psychic_octopus.

models to compare to in order to proceed. The models we consider
constrain the problem, and define which ideas we are willing to
consider. To be specific, as a first step, let’s consider the following
two models

H := {Paul is psychic}
R := {Paul is completely random, like a coin flip}

The next step is to be able to assign probabilities from these mod-
els. It is easy for the random hypothesis

P(correct prediction|R) = 0.5

P(incorrect prediction|R) = 0.5

What does it mean to be psychic? What is the probability of get-
ting a correct result if you are psychic? According to James Randi4 4 J. Randi. Flim-flam!: psychics, ESP,

unicorns, and other delusions, volume
342. Prometheus Books Amherst,
NY, 1982

many of the psychics and dowsers claim 100% accuracy in their pre-
dictions before they are tested. However this would mean a single
wrong answer would drive the probability of that model to zero: a
perfect predictor cannot, logically, make any mistakes. For our case
here, we choose to be generous to the psychic and allow for a reason-
able failure rate, using 90% as our accuracy, thus

P(correct prediction|H) = 0.9

P(incorrect prediction|H) = 0.1

http://en.wikipedia.org/wiki/Psychic_octopus
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Specifying the prior probability of these two models is a bit more
challenging. It seems reasonable to assign a small prior probability to
a psychic octopus - how many psychic octopi have you ever encoun-
tered? A small, but still quite conservative value, would be 1/100, so
we have for the two models: It is possible that we could be

accused of an anti-psychic bias
here, especially from someone who
is a true believer. Why shouldn’t
the prior be P(H) = 1/2? If you
had no world experience, that is
what you’d start with, but then the
behavior of the first octopi that you
encounter would generally lower
your assignment of the probability
of the next octopi being psychic.
After enough world experience,
updating your probability with
Bayes’ Rule, you’d arrive at a very
small prior for Paul, the current
octopus we are examining.

P(H) = 1/100

P(R) = 99/100

The First Model Comparison

Now that we’ve set up the problem, we can apply the Bayes’ Recipe

1 Specify the prior probabilities for the models being considered

P(H) = 1/100

P(R) = 99/100

2 Write the top of Bayes’ Rule for all models being considered

P(H|data = 12 out of 14) ∼ P(data = 12 out of 14|H)P(H)

P(R|data = 12 out of 14) ∼ P(data = 12 out of 14|R)P(R)

where we are using the symbol ∼ to denote proportionality or re-
lated to. Essentially, by calculating the top of Bayes’ Rule first, the
numbers are not equal to the final (i.e. posterior) probabilities but
must be rescaled to make sure that they add up to 1. This is done
in the final step. Up until that rescaling, we use the symbol ∼ and
think of it as related to.

3 Put in the likelihood and prior values

P(H|data = 12 out of 14) ∼
(

14
12

)
0.9120.114−12 × 1

100

= 0.00257

P(R|data = 12 out of 14) ∼
(

14
12

)
0.5120.514−12 × 99

100

= 0.00549

4 Add these values for all models

K = 0.00257 + 0.00549 = 0.00806

5 Divide each of the values by this sum, K, to get the final probabili-
ties

P(H|data) =
0.00257
0.00806

= 0.32

P(R|data) =
0.00549
0.00806

= 0.68
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and the psychic loses! We continue this problem discussing the po-
tential anti-psychic bias in the presentation of the problem.

Furthering the Comparison

Typically, a person who is supportive of psychic phenomena would
choose a prior for our psychic hypothesis (H) that would be at least
as large as the prior for the random hypothesis (R). In this case, the
(posterior) probability of the octopus being psychic given the data
of 12 correct out of 14 would be much higher. After “ruling out” the
random octopus hypothesis, we’d be left with psychic. But is that all
that is really left? No, and the analysis is easy to do.

Once presented with the success of Paul, most people instantly
are suspicious of random octopus, but don’t adopt psychic octopus
as the answer. Perhaps the keepers, being German, biased the data
taking a little bit. Perhaps the octopus chose flags with bright yellow
stripes. Notice that each of these cases still results in similar data -
the octopus would have gotten 11 or 12 out of 14, but the prior prob-
ability of these cases should be much higher than psychic, even if
lower than random. We leave it as an exercise to perform the calcula-
tion in this case, but it is directly parallel to the Nines deck example
of Section 4.2 on page 102.

5.4 Monty Hall Problem

This problem was introduced in Section 2.6.

Example 5.1 Is it better to switch doors? - Monty Hall Problem revisited

You may recall that we were presented with a choice of 3 doors
where a car is behind one and goats behind the others. Having
picked one, the host opens up a door with a goat, and offers you
the opportunity to change your answer. In order to assess the proba-
bilities, we must remember that

1 the host never opens your door

2 the host always opens a door with a goat

We’ll go through a specific example, that of you choosing door 1

and the host opening door 2. The analysis proceeds in identical ways
for the other possibilities. We apply the Bayes’ Recipe, where the
models under consideration are

• “car behind door 1”

• “car behind door 2”
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• “car behind door 3”

The Bayes’ Recipe proceeds as follows

1 Specify the prior probabilities for the models being considered

P (car 1|you 1) = 0.333

P (car 2|you 1) = 0.333

P (car 3|you 1) = 0.333

where, for example, P (car 1|you 1) represents the probability that
the door contains the car given that you chose door 1. Since your
choice of door doesn’t add any information about the location of
the car, all of the probabilities are equal.

2 Write the top of Bayes’ Rule for all models being considered

P (car 1|you 1, host 2) ∼ P (host 2|you 1, car 1) P (car 1|you 1)

P (car 2|you 1, host 2) ∼ P (host 2|you 1, car 2) P (car 2|you 1)

P (car 3|you 1, host 2) ∼ P (host 2|you 1, car 3) P (car 3|you 1)

3 Put in the likelihood and prior values

Due the restrictions on the host above, the host cannot open a
door with a car, so P (host 2|you 1, car 2) = 0. In the case where
you choose door 1 and the car is also behind door, the host has the
freedom to choose either door 2 or door 3, so P (host 2|you 1, car 1) =

0.5. Where the information comes in is when the car is behind
door 3 and you’ve chosen door 1. In that case, the host cannot
open your door (door 1) or the door with the car (door 3) and must
open door 2. Thus, P (host 2|you 1, car 3) = 1.

The final result of this step is

P (car 1|you 1, host 2) ∼ 0.5 · 0.333

P (car 2|you 1, host 2) ∼ 0 · 0.333

P (car 3|you 1, host 2) ∼ 1 · 0.333

4 Add these values for all models

K = 0.5 · 0.333 + 1 · 0.333 = 0.5

5 Divide each of the values by this sum, K, to get the final probabili-
ties

P (car 1|you 1, host 2) =
0.5 · 0.333

0.5
= 0.333

P (car 2|you 1, host 2) =
0 · 0.333

0.5
= 0

P (car 3|you 1, host 2) =
1 · 0.333

0.5
= 0.666
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Thus, in the case, given that you choose door 1 and the host
chooses 2, the probability that the car is behind door 1 (your door)
is 0.333 and the other door (door 3) is 0.666. Following the same steps
through the other cases, we get in summary

Probability of...
Your Choice Host Choice Car Behind 1 Car Behind 2 Car Behind 3

1 1 (host can’t open your door)
1 2 0.333 0 0.666

1 3 0.333 0.666 0

2 1 0 0.333 0.666

2 2 (host can’t open your door)
2 3 0.666 0.333 0

3 1 0 0.666 0.333

3 2 0.666 0 0.333

3 3 (host can’t open your door)

In summary, it is always better to switch to the remaining door,
given these rules.





6 Introduction to Parameter Estimation

We will introduce the idea of what is called parameter estimation using
a simple system of bent coins. This will generalize to more complex
models, and form the basis for much of statistical inference.

6.1 Bent Coins

Figure 6.1: Bent Coins

Imagine we have a series of coins bent by various amounts (Fig-
ure 6.1). If the coin is bent completely in half, then we could have the
coin always flip heads (i.e. P (heads) = 1) or tails (i.e. P (tails) = 1)
depending on how it is bent. If you don’t bend the coin at all then
we’d have a fair coin (P (heads) = P (tails) = 0.5). So, let’s say Why do we number them from zero

here? It’s so that the number of the
coin, say number 7, corresponds
the probability that that coin flips
heads, P (heads) = 0.7

that we have a collection of bent coins which are bent by different
amounts. For convenience we will number them from 0 to 10. The
Table 6.1 summarizes the probability of each coin flipping heads.

Coin Number Probability for Flipping Heads (P (heads))

0 0.0
1 0.1
2 0.2
3 0.3
4 0.4
5 0.5
6 0.6
7 0.7
8 0.8
9 0.9

10 1.0

Table 6.1: Probabilities for flipping
heads given a collection of bent
coins

Now I have the following scenario1, with a few questions. 1 D. V. Lindley and L. D. Phillips.
Inference for a bernoulli process
(a bayesian view). The American
Statistician, 30(3):112–119, 1976

Imagine I have taken a random coin from my collection, flipped it and
observed the following data:

T T T H T H T T T T T H (i.e. 9 tails and 3 heads)

1 From this data, which coin do I most likely have?
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2 Can we be significantly confident that this particular coin will result
in more tails than heads in the future?

The way we’ve set up this problem is exactly like the model com-
parison example with the High and Low Deck (Section 4.1), except in
this case we have 11 models (one for each coin). Applying the Bayes’
Recipe we have

1 Specify the prior probabilities for the models being considered.
Given no further information, we select a uniform distribution for
the prior (i.e. all models are initially equally probable):

P(M0) = 1/11

P(M1) = 1/11
...

P(M10) = 1/11 .

where M0 is the model defined by “we’re flipping coin 0,” M1 is
the model defined by “we’re flipping coin 1,” etc...

2 Write the top of Bayes’ Rule for all models being considered:

P(M0|data = 9T, 3H) ∼ P(data = 9T, 3H|M0)P(M0)

P(M1|data = 9T, 3H) ∼ P(data = 9T, 3H|M1)P(M1)

...

P(M10|data = 9T, 3H) ∼ P(data = 9T, 3H|M10)P(M10) .

3 Put in the likelihood and prior values. Here we are drawing from
a binomial distribution for the likelihood:

P(M0|data = 9T, 3H) ∼
(

12
3

)
0.03 × (1− 0.0)9 × 1/11

P(M1|data = 9T, 3H) ∼
(

12
3

)
0.13 × (1− 0.1)9 × 1/11

...

P(M10|data = 9T, 3H) ∼
(

12
3

)
1.03 × (1− 1.0)9 × 1/11 .

4 Add these values for all models: see Table 6.2.

5 Divide each of the values by this sum, K, to get the final probabili-
ties: see Table 6.2.

When we are dealing with this many models, it is easier to plot the
results, shown in Figure 6.2. We are now in a position to address the
questions posed at the beginning of the section.
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Model ∼ P(Mi|data = 9T, 3H) ∼ P(Mi|data = 9T, 3H)/K

M0 0.000 0.000

M1 0.00774 0.110

M2 0.0214 0.306

M3 0.0217 0.310

M4 0.0128 0.184

M5 0.00488 0.0696

M6 0.00113 0.0161

M7 0.000135 0.00192

M8 0.00000524 0.0000748

M9 0.0000000145 0.000000208

M10 0.000 0.000

K=0.0700

Table 6.2: Probability for different
bent-coin models, given the data=9

tails, 3 heads. The middle column
is the non-normalized value from
Bayes’ Rule, needing to be divided
by K (the sum of the middle col-
umn) to get the final column which
is the actual probability.
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Figure 6.2: Probability for different
bent-coin models, given the data=9

tails, 3 heads.
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1 From this data, which coin do I most likely have?

The maximum probability is for coin 3, but coin 2 is a close sec-
ond. Thus we can be reasonably confident that we have been flip-
ping one of those two coins, but can’t narrow our confidence any
more than that.

2 Can we be significantly confident that this particular coin will result
in more tails than heads in the future?

This is another way of asking for the total probability for coins less
than coin 5 (the fair coin), or

P (coin 0 or coin 1 or coin 2 or coin 3 or coin 4) =

0.000 + 0.110 + 0.306 + 0.310 + 0.184 = 0.912

which says that this coin is “likely” to “very likely” (Table 1.1 on
page 51) to have a probability of yielding heads less than a fair
coin, and thus yield more tails in the future.

6.2 Priors versus Data

It is instructive to pause and look at this example one flip at a time,
to see how the probability and thus our state of knowledge adjusts
as we collect more data. In Figure 6.3 we see the result of our proce-
dure when there is no data (i.e. our initial, prior probabilities) and
when we’ve flipped once and then again, both times tails. The curve
for “no data” is the same as the prior probability, and in this case all
models are equally likely. When the first tails is observed, the model
which states that heads are certain (i.e. coin 10) goes to zero proba-
bility because coin 10 cannot flip tails.2. At this point we know that it 2 Notice that the only models with

probability equal to zero are ones
that are logically impossible. It’s not
the colloquial usage of impossible,
as in “it is impossible for the Red
Sox to win this year,” but in the
strict usage, as in “it is impossible
to flip both heads and tails at the
same time.” The reason this is
the case is that a statement with
zero probability cannot be made
possible with any about of data - it is
an utterly dogmatic statement. Thus,
we reserve it only for things that are
logically impossible.

is impossible for us to be flipping coin 10. We see also that the high-
numbered coins (i.e. the ones with high probability of flipping heads)
have greatly reduced probability while we’ve seen only tails.

As more tails are observed, the probability for the lower models
is increased. As we flip more tails we become more confident in the
lower-number models. Because at this point we haven’t flipped any
heads, the model 0 still has non-zero probability - it is still possible
that we are holding a coin that cannot flip heads.

When we continue with the next few flips (Figure 6.4) we en-
counter our first heads on the fourth flip. At this point the model
which states that heads are impossible (i.e coin 0) goes to zero proba-
bility. Finally, across our entire data set (Figure 6.5) we see that the
curve gets narrower, where more of the probability falls on only a
few of the models and the other models become less and less likely.
With only 12 data points, there is still a lot of uncertainty in which
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Figure 6.3: Probability for different
bent-coin models, given no data
(left), the first tails (middle), and
the second tails (right). The curve
for no data is the same as the prior
probability, and in this case all
models are equally likely. When
the first tails is observed, the model
which states that heads are certain
(coin 10) goes to zero probability.
As more tails are observed, the
probability for the lower models is
increased.

model - several models have reasonably high probability values. We
still can rule out a few models confidently (like coins 0, 6, 7, 8, 9, and
10). We are most confident in coins 2 and 3, with the most probabil-
ity.
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Figure 6.4: Probability for different
bent-coin models, given three tails
(left), the first heads (middle), and
another tails (right). When the first
heads is observed, the model which
states that heads are impossible (coin
0) goes to zero probability.

6.3 Moving Toward the Continuous

There is a practical problem that we face at this point, when we
consider a generic bent coin. Perhaps it doesn’t fit in one of the 11

models considered, falling somewhere in between, for example with
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Figure 6.5: Probability for different
bent-coin models, given no data
(left), the first half of the data set
(middle), and the entire data set of
9 tails and 3 heads (right).

P (heads) = 0.132464. Ones’ first thought might be to include one
thousand coins or one million coins instead of the 11 we’ve consid-
ered so far, so we could have coin 132464, coin 132465, coin 132466,
etc... Although this can be done, we run into two problems

1 Because we are dealing with so many models, the probability
associated with any single model gets very small - and gets smaller
with the more models you consider

2 We can’t practically distinguish between models such as P (heads) =
0.132464 and P (heads) = 0.132465 (the last digit is different here)

In order to solve both of these problems mathematically, we in-
troduce the concept of a continuous distribution. We start by labeling
the model with a continuous number rather than an integer. In our
present case it makes sense to label the model with the probability
that the coin flips heads. We’ll call this label θ, and it will have a
value between 0 (heads are impossible) and 1 (heads are certain) and
can take on any value in between. Because we now have an infinite
number of labels, we have two consequences:

1 We can’t simply add up all the probabilities to get our value of K
to make everything add up to 1. Instead, we look at areas under the
curve and make sure the entire area equals 1.

2 Because, with distributions, areas under the curve (and not the
values of the distribution itself) are the probabilities, we can
only speak about ranges of values. For example, we can speak
meaningfully about the probability of θ between 0.3 and 0.4 (i.e.
P(0.3 < θ < 0.4)). When we write down something like P(θ) = 1
we’re not talking about a probability of a single label but rather
the magnitude of the distribution at that label, θ.
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We revisit Bayes’ Recipe again, using the distributions. This time
we also will look at pictures of the distributions as we progress.

1 Specify the prior probabilities for the models being considered:

P(θ) = 1 .
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2 Write the top of Bayes’ Rule for all models being considered:

We can write one equation for all of the models labeled by θ at
once as

P(θ|data = 9T, 3H) ∼ P(data = 9T, 3H|θ)P(θ) .

3 Put in the likelihood and prior values.

We use the binomial model, one equation for all models, remem-
bering that for a model labeled by θ the probability for that coin
flipping heads is P (heads) = θ. Thus we get the likelihood and
prior values as

P(θ|data) ∼ P(data|θ) · P(θ)

P(θ|data9T, 3H) ∼
(

12
3

)
θ3 × (1− θ)9 · 1
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4 Find the area under this curve, and call it K.

5 Divide each of the values of the curve by this are, K, to get the
final probabilities where the area under the curve is 1.
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Usually these steps are done for you, for a specific data set, and
you are given the final posterior distribution to use in answering
any questions. However, for any particular case it is important to
know what assumptions have been made in the choice of models and
model parameters.

6.4 MAP and Areas

Now we revisit the questions posed in Section 6.1 on page 121 about
the bent coin, this time using the distribution found above, repro-
duced here in Figure 6.6.

Imagine I have taken a random coin from my collection, flipped it and
got the following data:

T T T H T H T T T T T H (i.e. 9 tails and 3 heads)
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1 From this data, which “coin” do I most likely have? (or in this
interpretation, what is my best estimate for the probability of this
coin flipping heads, denoted by θ)

2 Can we be significantly confident that this particular coin will result
in more tails than heads in the future?

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ

0

1

2

3

4

P
(θ

)

maximum probability

3 heads and 9 tails

Figure 6.6: Posterior probability
distribution for the θ values of
the bent coin - the probability
that the coin will land heads. The
distribution is shown for data 3

heads and 9 tails, with a maximum
at θ = 0.25.

One answer to the first question can be accomplished by looking
at the maximum of the posterior distribution, shown in Figure 6.6.3 3 The maximum of the posterior dis-

tribution, which represents the most
likely value of a quantity, is often
referred to as the MAP estimate. It
is also commonly referred to as the
mode of the distribution.

By eye, it seems to have a maximum at θ = 0.25. In fact one can
demonstrate that this distribution has a maximum at

θmax =
number of successes

total number of attempts
,

where in our example, a success is head, and an attempt is a flip.4 4 This distribution, given how
common it is, is given the name Beta
distribution. There are a handful
of common distributions that are
given names for convenience. We’ve
already seen the uniform distribution,
and there will be others.

We take up this question of the best estimate of θ, given the posterior
probability for θ, in more detail in Section 6.6.

The answer to the second question can be done by looking at
the area under the curve from θ = 0 , the “all heads” coin, to θ =

0.5, the “fair” coin, as shown in Figure 6.7. This area represents the
probability, given the data, that the coin is skewed towards heads
or, in other words, how confident are we that this is an unfair coin.
Given the value of P(θ < 0.5) = 0.954 we can say that this is “very
likely” an unfair coin (see Table 1.1 on page 51).
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Figure 6.7: Posterior probability
distribution for the θ values of
the bent coin - the probability
that the coin will land heads. The
distribution is shown for data 3

heads and 9 tails. The area under
the curve from θ = 0 (the “all
heads” coin) to θ = 0.5 (the “fair”
coin) is 0.954.

6.5 Quartiles

Given that we are dealing most often with continuous distributions,
and thus need to look at areas under the curve from one point to
another, it is useful to make a table for a distribution of these areas.
Typically we look at the values of the parameter at which we have a
given area under the curve from the minimum possible value of the
parameter up to to that value. For example, we might be interested
in the value of θ (i.e. how skewed the coin is) such that we have an
area of 50% from 0 up to θ, shown in Figure 6.8. This point (called
the median) represents the point where we would be just as confident
(given our data) that the coin is more skewed than this as less skewed.

A table of these values for a distribution can be very useful. For
example, consider the table and plot shown in Figure 6.9. Shown are
the various points where the area under the curve up to those points
is specified. For example, the area under the curve from θ = 0 up
to θ = 0.11 is 5%. This means, given the data of 3 heads and 9 tails,
there is a probability P = 5% of the coin having less than θ = 0.11, or
an extreme skew towards tails.

Quartiles The term quartiles refers to the values of the parameter Quartiles The term quartiles refers
to the values of the parameter
which result in an area of 25%,
50%, or 75%, or one, two, or three
quarters of the area.

which result in an area of 25%, 50%, or 75%, or one, two, or three
quarters of the area.

When we wish to refer to a non-quarter percentage, then we’ll call
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area=0.5

3 heads and 9 tails

Figure 6.8: Posterior probability
distribution for the θ values of
the bent coin - the probability
that the coin will land heads. The
distribution is shown for data 3

heads and 9 tails. The area under
the curve from θ = 0 (the “all
heads” coin) to θ = 0.28 is 0.5 - half
the area. This represents the median
of the distribution.

it a percentile.
Percentiles The term percentile refers to the value of the parameter Percentiles The term percentile

refers to the value of the parameter
which result in a particulare area
under the curve.

which result in a particulare area under the curve.
For example, we can say from Figure 6.9 that the 99% percentile is

0.59. Thus, it is extremely unlikely to have the coin skewed towards
heads more than θ = 0.59 given the observation that we flipped 3

heads and 9 tails with this coin.
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Beta(heads=3,tails=9)
Value Area
0.07 0.01

0.11 0.05

0.14 0.10

0.20 0.25

0.28 0.50

0.36 0.75

0.44 0.90

0.49 0.95

0.59 0.99

Figure 6.9: Posterior probability
distribution for the θ values of
the bent coin - the probability
that the coin will land heads. The
distribution is shown for data 3

heads and 9 tails. The various
quartiles are shown in the plot, and
summarized in the accompanying
table.

6.6 Best Estimates

Perhaps surprisingly, there is not a single answer to the best esti-
mate for θ given the posterier distribution, like the one shown in
Figure 6.9. There are several plausible measures, each with their own
advantages. Any specific estimate of a parameter (e.g. θ) is denoted
with a hat (e.g. θ̂) in the descriptions that follow.

The Mode Also known as the maximum a-posteriori probability The Mode Also known as the max-
imum a-posteriori probability (MAP)
estimate, the mode is the maximum
of the posterior probability.

(MAP) estimate, the mode is the maximum of the posterior probabil-
ity. In the case of a Beta distribution with h successes in N trials, we
have

θ̂mode =
h
N

The Mean Also known as the expected value or average value, the The Mean Also known as the
expected value, the mean of a distri-
bution of a parameter θ is defined
to be the sum of all of the possi-
ble values of θ times the posterior
probability of θ, as in

θ̂mean = ∑
θ

θ × P(θ|data)

It is one measure of the middle of
the distribution.

mean of a distribution of a parameter θ is defined to be the sum of all
of the possible values of θ times the posterior probability of θ,

θ̂mean = ∑
θ

θ × P(θ|data)

It is one measure of the middle of the distribution. In the special case
of a Beta distribution with h successes in N trials, we have

θ̂mean =
h + 1
N + 2
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Intuitively this is the same as the MAP of the Beta distribution, with
one more success and one more failure than actually observed. Fur-
ther, for the Beta distribution, the mean value θ̂mean represents the
predictive probability of a successful event on the next observation.

The Median Also known as the 50%-percentile, the median rep- The Median Also known as the
50%-percentile, the median repre-
sents the middle of the distribution
such that the probability of the
parameter below the median equal
to the probability of the parameter
above the median.

P(θ ≤ θ̂median|data) = 0.5

P(θ ≥ θ̂median|data) = 0.5

resents the middle of the distribution such that the probability of the
parameter below the median equal to the probability of the parame-
ter above the median.

P(θ ≤ θ̂median|data) = P(θ ≥ θ̂median|data) = 0.5

“Assume 2 successes and 2 failures” median approximation For “Assume 2 successes and 2 fail-
ures” median approximation For
the Beta distribution there is no
simple form for the median, but
a decent approximation which we
will use is given by

θ̂median ≈ h + 2
N + 4

Intuitively this is the same as the
MAP of the Beta distribution, with
two more successes and two more
failures than actually observed, and
is thus referred to as the “Assume
2 successes and 2 failures” median
approximation.

the Beta distribution there is no simple form for the median, but a
decent approximation which we will use is given by5

5 Alan Agresti and Brian Caffo.
Simple and effective confidence
intervals for proportions and
differences of proportions result
from adding two successes and two
failures. The American Statistician, 54

(4):280–288, 2000

θ̂median ≈ h + 2
N + 4

Intuitively this is the same as the MAP of the Beta distribution, with
two more successes and two more failures than actually observed,
and is thus referred to as the “Assume 2 successes and 2 failures”
median approximation.

Although each of these has their advantages, most notably ease of
computation (especially for the mode and the mean), we will typi-
cally use the median of the distribution as the best estimate for the
following reasons:

1 the median is intuitive as literally the middle of the distribution

2 the median is not as sensitive to distributions that are highly
asymmetric

In most practical examples it may not make much difference, and
for some distributions (such as the Normal distribution described in
Chapter 7 (Priors, Likelihoods, and Posteriors)) there is not difference -
the mean is the median which is also the mode.

Example 6.1 What is the best estimate of the probability of a bent coin
flipping heads, given the observation of 9 tails and 3 heads?

If we take the best estimate to be the median, then we have from
the “assuming 2 successes and 2 failures” method,

θ̂median ≈ h + 2
N + 4

=
5
16

= 0.313
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Notice that the maximum probability was at the somewhat lower
value

θ̂mode =
h
N

=
3
12

= 0.25

One reason why the median is a better estimate in this case is
because, as shown in Figure 6.9, there is more probability (i.e. area
under the curve) to the right of the maximum than to the left, so the
best estimate should be greater than the one given by the mode.

6.7 Uncertainty in the Best Estimates

To quantify the uncertainty in the best estimates, we need a value
which represents the width of the distribution. Looking at Figure 6.10

we’d like to provide a quick way of saying that the range of probable
values lies somewhere between θ = 0.2 and θ = 0.5 - anything
outside of this contributes only a small amount to the probability,
or in other words, we are most confident that our best estimate of
θ lies between those 0.2 and 0.5. Depending on the application, the
symmetry of the distribution, and other practical factors one may see
a few potential measures of the width of the distribution.

Inter-Quantile Range The Inter-Quantile Range (ICR) is the range Inter-Quantile Range The Inter-
Quantile Range (ICR) is the range
between the 25% and 75% quar-
tiles, and represents 50% of the
probability.

between the 25% and 75% quartiles, and represents 50% of the proba-
bility.

In Figure 6.10, the Inter-Quantile Range range is [0.29,0.40].

95% Credible Interval (CI) The 95% Credible Interval (CI) is the 95% Credible Interval (CI) The
95% Credible Interval (CI) is the
range between the 2.5% and 97.5%
quantiles, and thus represents 95%
of the probability. According to
Table 1.1 on page 51, it is “very
likely” that our best estimate lies in
this range.

range between the 2.5% and 97.5% quantiles, and thus represents
95% of the probability. According to Table 1.1 on page 51, it is “very
likely” that our best estimate lies in this range.

In Figure 6.10, the 95% Credible Interval is nearly [0.2,0.5].

Standard Deviation The standard deviation is a measure of the Standard Deviation The standard
deviation is a measure of the
half-width of a distribution, most
commonly used specifically with
reference to the particular Normal
distribution. This will be defined
more precisely in Section 7.2 on
page 140), and will thus not be
defined in general here.

half-width of a distribution, most commonly used specifically with
reference to the particular Normal distribution. This will be defined
more precisely in Section 7.2 on page 140), and will thus not be de-
fined in general here.

An approximate value for the standard deviation for the Beta
distribution is

σ ≈
√

θ̂(1− θ̂)/N

From Figure 6.10, and using the median as the best estimate, θ̂, we
get

σ ≈
√

0.34(1− 0.34)/30 = 0.09
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Standard Deviation to Uncertainty To convert this number to an Standard Deviation to Uncertainty
To convert this number to an
uncertainty, it is a mathematical
consequence that about 65% of the
area is within 1 value of σ, 95% of
the area is within 2 values of σ, and
99% of the area within 3 values.

uncertainty, it is a mathematical consequence that about 65% of the
area is within 1 value of σ, 95% of the area is within 2 values of σ,
and 99% of the area within 3 values.

So, of for the approximate 95% CI for the case shown in Fig-
ure 6.10 is

[0.34− 2 · 0.09, 0.34 + 2 · 0.09] = [0.16, 0.52]

a bit more conservative range (larger uncertainty) than is given by the
direct method of quantiles, but it much easier to calculate.

6.8 Marginalization

In Section 1.4 we introduced the concept of marginalization, and in
Section 2.1 we performed a discrete example of this. In that section
it was seen as simply a consequence of the sum and product rules. It
was a way of taking a probability that depended on several factors,
and eliminating all but the single factor we’re interested in. If we
have a continuous distribution, this process involves calculus and we
will not cover it in detail, but it is the same process. In the case of the
distribution above, we have a distribution over a single variable, like
Beta(θ|h, t). Imagine that we have a distribution that depends on two
parameters,

MyDist(θ, ξ)

which specifies the probability of an event given each combination of
the parameters, θ and ξ. We’d have to do a three-dimensional plot to
visualize this. Many times, however, we want just the probability of
one of the single parameters. In those cases we will write

P(θ) ∼ [MyDist(θ, ξ)]marginalize over ξ

where we are “summing” over all the values of the other parame-
ters, leaving the details to the mathematicians, and simply using the
result.

Likewise we can marginalize the parameter θ to get the distribution
of the other variable.

P(ξ) ∼ [MyDist(θ, ξ)]marginalize over θ

This becomes important in Chapter 7 and Chapter 9.

6.9 Exercises

Exercise 6.1 Given the posterior shown in Figure 6.10 for 10 heads and 20
tails, answer the following:
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1 The most likely estimate for the parameter θ. What does this mean?

2 Is it likely that this is a fair coin?

3 What is P(0 ≤ θ ≤ 0.3) approximately?

4 What is P(0.2 ≤ θ ≤ 0.35) approximately?

5 What is the median value? What are the quartiles?
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0.17

5%

0.21

25%

0.29

50%

0.34

75%

0.40

95%

0.49

99%

0.55

10 heads and 20 tails

Beta(heads=10,tails=20)
Value Area
0.17 0.01

0.21 0.05

0.24 0.10

0.29 0.25

0.34 0.50

0.40 0.75

0.45 0.90

0.49 0.95

0.55 0.99

Figure 6.10: Posterior probability
distribution for the θ values of
the bent coin - the probability
that the coin will land heads. The
distribution is shown for data 10

heads and 20 tails. The various
quartiles are shown in the plot, and
summarized in the accompanying
table.

6.10 Computer Examples

from s i e import *

Beta Distribution Example

3 heads and 9 tails Plot a beta distribution with 3 heads and 9 tails...

d i s t =beta ( h=1 ,N=3)
d i s t p l o t ( d i s t , xlim = [ 0 , 1 ] , show_quart i les=Fa l se )
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The median of this distribution...

d i s t . median ( )

0.27527583248615201

the 95

c r e d i b l e _ i n t e r v a l ( d i s t )

(0.067585986488542985, 0.38572756813238962, 0.80587955031675662)

1 heads and 3 tails This should be about the same fraction as the previous example, but broader

d i s t =beta ( h=1 ,N=4)
d i s t p l o t ( d i s t , xlim = [ 0 , 1 ] )

<matplotlib.figure.Figure at 0x108768cd0>



introduction to parameter estimation 137

c r e d i b l e _ i n t e r v a l ( d i s t )

(0.052744950526316919, 0.31381017045569742, 0.71641793611808946)





7 Priors, Likelihoods, and Posteriors

7.1 Binomial and Beta Distributions

In Chapter 6 (Introduction to Parameter Estimation on page 121) we
estimated the chance, θ, that a bent coin would come up heads by
combining a uniform prior for θ (i.e. all possible values are a-priori
equally likely) and a binomial likelihood (i.e. given θ, what is the
probability of the data). This resulted in a Beta distribution for the
posterior probability for θ.

Notice what the procedure of Bayes’ Recipe is and how the Bayesian
inference works here.

1 Specify the prior probabilities for the models being considered

We want to estimate a quantity (which we label as θ), but begin
with absolutely no knowledge of its value - we have a uniform prior
probability.

2 Write the top of Bayes’ Rule for all models being considered

We construct a model for how different possible values of θ influ-
ence the outcome - a model we call the likelihood. In the case of the
bent coin, the likelihood model is a binomial model, and describes
the probability of flipping heads or tails given how bent the coin is
(i.e. given θ).

3 Put in the likelihood and prior values

4 Add these values for all models

5 Divide each of the values by this sum, K, to get the final probabili-
ties

Once we observe data, we can combine the prior and the model or
likelihood using the Bayes’ recipe, and obtain the posterior distribu-
tion for the unknown value, θ, giving us the probability for each
value, now updated with our new observations.

The last couple of steps of the recipe, for simple cases, is done by
the mathematicians so we don’t have to manually add and divide as
we did in the previous chapters. In the case of the coin flips we get:
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Beta(θ|data)︸ ︷︷ ︸
posterior probability

∼
likelihood︷ ︸︸ ︷

Binomial(data|θ)× Uniform(θ)︸ ︷︷ ︸
prior probability

From this Beta distribution, we can get the most likely values (i.e.
maximum probability value) for the unknown quantity of interest,
θ, our uncertainty in this quantity (i.e. the width of the Beta distribu-
tion) consistent with the known data. In other words, the posterior
probability summarizes all of our knowledge about the parameter of
interest given the data.

7.2 The Normal Distribution - Properties

The Normal distribution, also referred to as the Gaussian distribution,1 1 The distribution is named after
Carl Friedrich Gauss who intro-
duced it in 1809. However, it has
been called in the past the Gauss-
Laplacian distribution, due the the
fact that Pierre Simone de Laplace
was the first to apply it to real prob-
lems, and proved a number of very
useful properties of it.

is by far the most commonly occurring distribution in all of statistical
inference, so it requires some special attention.

The Shape

The shape of the Normal distribution is sometimes described as
bell-shaped, as shown in Figure 7.1, and is thus referred to as the bell-
curve (although there are several other mathematical functions which
are bell-shaped). The function is referred to as Normal(µ, σ) where
µ and σ are parameters of the model. (see Appendix B.1 on page 225

for a review of greek letters)
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Figure 7.1: The Normal Distribu-
tion.
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The location parameter, µ

The location parameter (see Figure 7.2) is the value of x for which
the Normal distribution has a maximum probability. In a real sense,
it is the middle of the distribution, and the best estimate of x. For the
Normal distribution the location parameter, µ, is at once the mean,
median and mode of the distribution.
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µ=0 µ=3µ=−2

Figure 7.2: The Normal distribution
with different location parameters,
µ.

The deviation parameter, σ

As shown in Figure 7.3 the deviation parameter, σ, is a measure of
how spread out the distribution is. As the width increases, the height
goes down to keep the area under the curve constant (at 1). As a
result, more of the probability sits at larger values of x as σ gets larger.

Three useful properties of σ for the Normal distribution are the
following:

1 the Normal distribution value at the maximum (i.e. at x = µ)
is around 2.7 times larger than the value one-σ away from the
maximum (at x = µ− σ and x = µ + σ)

2 the total probability between these two points is 65%. This is typi-
cally written, µ± σ.

3 95% of the distribution lies between µ − 2σ and µ + 2σ (see Fig-
ure 7.3)

For example, writing 5± 2 typically implies a Normal distribution
with mean µ = 5 and deviation σ = 2. One is 65% certain that the



142 statistical inference for everyone

range of the estimated value is between 3 and 7, and 95% certain that
the range is between 1 and 9 (i.e. mean minus two deviations and
mean plus two deviations).
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Figure 7.3: The Normal distribution
with different deviation parameters,
σ.

Summarizing the Distribution

We can specify the Normal distribution with just the two parameters,
µ and σ - the location and deviation parameters, respectively. How-
ever, due to its symmetry, we can summarize this distribution for
all cases by looking a a single special case called the standard Normal
distribution.

The Standard Normal Distribution is the Normal distribution in The Standard Normal Distribution
The Normal distribution in the
special case where µ = 0 (the
distribution is centered at x = 0)
and σ = 1 (the distribution has a
spread of 1).

the special case where µ = 0 (the distribution is centered at x = 0)
and σ = 1 (the distribution has a spread of 1).

For any Normal distribution, the area within 1-σ is 0.68, within 2-σ
is 0.95, and 3-σ is 0.99. These locations are the most prevalently used
in any kind of statistical testing, and thus we will see them many
times.

Moving from a General Normal to the Standard Normal and Back

In order to use the table of percentiles for the standard Normal dis-
tribution, we need to be able to translate from the Normal to the
standard Normal and back again. Luckily, it is a simple process, and
is one of the main reasons for using the Normal distribution - other
distributions are not so easily manipulated.
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Figure 7.4: The Standard Normal
Distribution (the Normal distribu-
tion in the special case where µ = 0
and σ = 1). The percentiles shown
are for positions 1-σ away from the
center, 2-σ away, and 3-σ away. The
area within 1-σ is 0.68, within 2-σ is
0.95, and 3-σ is 0.99. These locations
are the most prevalently used in
any kind of statistical testing, and
thus we will see them many times.

To facilitate this translation, we will use the variable x for the
Normal distribution and z for the standard Normal. So now, we need
to have a recipe for translating x to z (or vice versa), given µ and σ.
These recipes are:

1 x to z: subtract x by µ, and divide by σ

2 z to x: multiply z by σ and add µ

Example 7.1 Given a Normal distribution with a mean of µ = 150 and a
σ = 20, what is the most likely value?

The most likely value is the peak of the probability distribution,
x̂ = µ = 150.

Example 7.2 Given a Normal distribution with a mean of µ = 150 and
σ = 30, what is the probability P(x > 170)

To use the tables in Section D.3 on page 238, we first need to trans-
late everything to the standard Normal values.

x = 170 ⇒ z =
x− 150

30
= 0.67

From the table in Section D.3 on page 238, the area to the left of
z = 0.67 is 0.7486. Because we are asked the probability greater than
x = 170 we need to have the area to the right of the curve, or

P(x > 170) = 1− 0.7486 = 0.2514
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or about 1/4. In other words, with a mean µ = 150 and deviation
σ = 20, we’d expect about a quarter of the time that the value of the
variable would be greater than 170. Or, given our uncertainty of a
specific value, we’d assign a probability of around 25% to it being
larger than 170.

Exercise 7.1 Given a Normal distribution, with parameters µ = 10 and
σ = 2, determine the following probabilities:

1 P(x < 12)

2 P(6 < x < 14)

3 P(2 < x < 12)

Exercise 7.2 Given a Normal distribution, with parameters µ = 2 and
σ = 10, answer the following questions (see Table 1.1 on page 51 for refer-
ence):

1 Make a qualitative plot of the distribution to help you with the other parts
of the question

2 Is likely that x > 0?

3 Above which value of x is it very unlikely to observe?

4 Below which value of x is it extremely unlikely to observe?

Exercise 7.3 Given a Normal distribution, with parameters µ = 2 and
σ = 0.5, answer the following questions (see Table 1.1 on page 51 for
reference):

1 Make a qualitative plot of the distribution to help you with the other parts
of the question

2 Is likely that x > 0?

3 Above which value of x is it very unlikely to observe?

4 Below which value of x is it extremely unlikely to observe?

Sum and Differences

One more convenient property of the Normal distribution is that
sums and differences of variables that individually have Normal
distributions also have Normal distributions, although each with
a different mean and deviation parameter. The relationships are
summarized as follows.
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Sum of two Normally distributed variables If we have two vari- Sum of two Normally distributed
variables If we have two Normally
distributed variables, x and y, we
have

P(x) = Normal(µx , σx)

P(y) = Normal(µy, σy)

P(x + y) = Normal(µx + µy,√
σ2

x + σ2
y )

ables, x and y, which have Normal distributions

P(x) = Normal(µx, σx)

P(y) = Normal(µy, σy)

then their sum, x + y, has a mean the sum of the two, µx + µy and a

deviation
√

σ2
x + σ2

y .
One way to remember this is that the new squared deviation pa-

rameter is the sum of the two old ones,

σ2
x+y = σ2

x + σ2
y

Differences between two Normally distributed variables For Differences between two Normally
distributed variables

P(x− y) = Normal(µx − µy,√
σ2

x + σ2
y )

(Note the “+” sign in the new σ.)

differences, x − y, we have a new mean of µx − µy and deviation

parameter again
√

σ2
x + σ2

y . Note the “+” sign in the new σ, which
keeps the new σ positive which is must be by definition.

If we are asked for the distribution of a quantity with an added
constant, like

z = x + constant

then the probability of z is just the same as that of x (i.e. Normal
distribution with the same deviation), with the location parameter
moved by the constant

P(z) = Normal(µx + constant, σx)

Example 7.3 We have two Normal distributions P(x) = Normal(µ =

8, σ = 2) and P(y) = Normal(µ = 20, σ = 7). What is the distribution
for z = y− x?

The distribution P(z) is also a Normal distribution, with mean
µz = 20− 8 = 12 and deviation σz =

√
72 + 22 = 7.3.
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p(x) =Normal(8,2)

p(y) =Normal(20,7)

p(z) =p(y−x) =Normal(12.0,7.3)

7.3 The Normal Distribution - Estimating From Data

Estimating the mean, µ, knowing the deviation, σ

Typically one is provided with a series of measurements of a quan-
tity, and we want to estimate the value of that quantity, and have a
description of our uncertainty in the estimate. In Chapter 9 (Applica-
tions of Parameter Estimation and Inference on page 165) we go through
a number of detailed examples of this process. Here, we simply sum-
marize the result. We are given:

1 A series of N measurements, data={x1, x2, x3, . . . , xN}

2 The real deviation, σ

3 We are modeling the data as a true value, µ, with uncertainty with
a likelihood from the Normal distribution with known deviation,
σ, as in Normal(0, σ). Further, we assume independence between
the measurements.

Since in this case we are given σ, we wish then to estimate the pa-
rameter µ. The result will be a probability distribution over µ, with a
best (i.e. most probable) value and an uncertainty in that value. The
result is that the distribution of µ is also a Normal distribution, In scientific applications, this

notation is often shortened to
µ = x̄ ± σ/

√
N, so it is clear what

is the best estimate of µ (i.e. x̄)
and what is the uncertainty in that
estimate (i.e. σ/

√
N).

P(µ|data, σ) = Normal(x̄, σ/
√

N)

where the center value (and thus the most probable value of µ) is
given by the sample mean of the data.

Sample Mean The sample mean of a set of N samples, x1, x2, · · · , xN Sample Mean The sample mean of
a set of N samples, x1, x2, · · · , xN is
given by

x̄ ≡ x1 + x2 + x3 + · · ·+ xN

N
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is given by

x̄ ≡ x1 + x2 + x3 + · · ·+ xN
N

The uncertainty in µ is given by σ/
√

N. As a consequence, larger
N (i.e. more data points), makes us more confident in the particular
estimate for µ.

Estimate of location parameter µ given N samples and σ, the
known deviation In summary, the best estimate for the location Estimate of location parameter µ

given N samples and σ, the known
deviation The best estimate for
the location parameter µ in the
Normal distribution given a set of
N samples, x1, x2, · · · , xN is given
by

µ̂ =
x1 + x2 + · · ·+ xN

N
± σ/

√
N

parameter µ in the Normal distribution given a set of N samples,
x1, x2, · · · , xN is given by

µ̂ =
x1 + x2 + x3 + · · ·+ xN

N
± σ/

√
N

Example 7.4 Estimating the True Length of an Object

Say we have an object, and 5 measurements of its length from the
same ruler but from different people,

5.1[cm], 4.9[cm], 4.7[cm], 4.9[cm], 5.0[cm]

Say that we further know that the uncertainty (given this ruler) of
one measurement has σ = 0.5[cm]. What is the best estimate of the In real measurements, there is

always the problem of bias or
systematic uncertainties, where
the uncertainty does not follow a
Normal distribution. We will not
consider this issue here.

length? The best estimate should be given by the sample mean of
these 5 samples,

µ̂ =
x1 + x2 + · · ·+ xN

N

=
5.1[cm] + 4.9[cm] + 4.7[cm] + 4.9[cm] + 5.0[cm]

5
= 4.92[cm]

with uncertainty related to the known uncertainty of a single mea-
surement,

σ̂ =
σ√
N

=
0.5[cm]√

5
= 0.223[cm]

yielding a final best estimate of

µ̂ = 4.92[cm]± 0.223[cm]

or (with 2σ range), The 95% credible interval (CI) is
really at the 1.96σ level, yielding
[4.481[cm], 5.358[cm]]. We will
almost always approximate it as
2σ by hand, but the computer will
generate the true 95% credible
interval when requested.

µ̂ = 4.92[cm], 95% CI = [4.474[cm], 5.366[cm]]
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Estimating the mean, µ, not knowing the deviation, σ

If we are not so fortunate to be given the deviation, as in the previous
case, then this parameter too must be estimated from the data. As a
first step we can estimate the deviation with the sample deviation.

Sample Deviation The sample deviation of a set of N samples, Sample Deviation The sample
deviation of a set of N samples,
x1, x2, · · · , xN is given by

S ≡
√

1
N − 1

((x1 − x̄)2 + · · ·+ (xN − x̄)2)

x1, x2, · · · , xN is given by

S ≡
√

1
N − 1

((x1 − x̄)2 + (x2 − x̄)2 + · · ·+ (xN − x̄)2)

Approximate estimate of location parameter µ and deviation σ

given N samples The posterior probability for µ and σ given a set of Approximate estimate of location
parameter µ and deviation σ
given N samples The posterior
probability for µ and σ given a set
of N samples, x1, x2, · · · , xN can be
approximated with

P(µ|data) ∼ Normal(x̄, S/
√

N)

P(σ|data) ∼ Normal (S,

S2/
√
(N − 1)/3

)
which works well if we have many
(N > 30) data points.

N samples, x1, x2, · · · , xN can be approximated with

P(µ|data) ∼ Normal(x̄, S/
√

N)

P(σ|data) ∼ Normal
(

S, S2/
√
(N − 1)/3

)
which works well if we have many (N > 30) data points.

With a smaller data set, the value of S as an estimate for the devi-
ation becomes too small. When the estimate for σ is too small, then
the result is claiming more confidence in the estimate of the mean, µ,
than is warranted. This discrepancy depends on the number of data Because the uncertainty in the mean

depends explicitly on the number of
data points, it goes beyond the level
of this chapter to give a form for the
posterior probability distribution
for the deviation, σ.

points, and thus it makes sense that the proper distribution should
depend on the number of data points, in addition to the sample
mean and deviation. The proper, although less convenient, result is
that the posterior probability for µ takes the form of the Student’s t
distribution,

Estimate of location parameter µ given N samples and unknown
σ The posterior probability for µ takes the form of the Student’s t Estimate of location parameter µ

given N samples and unknown
σ The posterior probability for µ
takes the form of the Student’s t
distribution,

P(µ|data) = Studentdof=N−1(x̄, S/
√

N)

This distribution requires three
numbers to specify, referred to as
the mean (µ), deviation (σ) and the
degrees of freedom (dof). The degrees
of freedom is defined in this case to
be the number of data points less
one, N − 1.

distribution,

P(µ|data) = Studentdof=N−1(x̄, S/
√

N)

This distribution requires three numbers to specify, referred to as the
mean (µ), deviation (σ) and the degrees of freedom (dof). The degrees
of freedom is defined in this case to be the number of data points less
one, N − 1.

Example 7.5 Estimating the True Length of an Object...Again

Say we have an object, and 5 measurements of its length from the
same ruler but from different people,

5.1[cm], 4.9[cm], 4.7[cm], 4.9[cm], 5.0[cm]
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Unlike earlier, let’s say that we don’t know the uncertainty (given this
ruler) of one measurement What is the best estimate of the length?
Again, the best estimate should be given by the sample mean of these
5 samples,

µ̂ =
x1 + x2 + · · ·+ xN

N

=
5.1[cm] + 4.9[cm] + 4.7[cm] + 4.9[cm] + 5.0[cm]

5
= 4.92[cm]

with uncertainty related to the sample deviation

S2 =
1

N − 1

(
(x1 − x̄)2 + · · ·+ (xN − x̄)2

)
=

1
5− 1

(
(5.1[cm]− 4.92[cm])2 + (4.9[cm]− 4.92[cm])2 + (4.7[cm]− 4.92[cm])2+

(4.9[cm]− 4.92[cm])2 + (5.0[cm]− 4.92[cm])2
)

= 0.024[cm]2

S =
√

0.024[cm]2 = 0.155[cm]

S√
N

=
0.155[cm]√

5
= 0.069[cm]

Looking at Table D.2on page 236 with “Degrees of Freedom” equal
to 4, we find that the 95% credible interval for µ (between areas 0.025

and 0.975) falls ±2.776 · S/
√

N, thus we have

µ̂ = 4.92[cm], 95% CI = [4.92[cm]− 2.776 · 0.069[cm], 4.92[cm] + 2.776 · 0.069[cm]]

= 4.92[cm], 95% CI = [4.73[cm], 5.11[cm]]

Although much of this is easier with the computer, it is instructive
to go through simple examples by hand.

7.4 Normal Approximation

The Normal distribution is useful for many reasons: its simple shape,
the fact that there are only two parameters which describe it, and the
ease with which one can compare the general Normal distribution to
the single standard Normal. Further, it can be used as an approxima-
tion for several other distributions, under certain limits.

The Beta Distribution

We first saw the beta distribution as the posterior description in a
bent-coin parameter estimation problem (see Section 6.3 on page 125

in Chapter 6 (Introduction to Parameter Estimation)). The Normal ap-
proximation occurs when the number of flips gets large, compared
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to how likely the coin flips heads. For notation, we will write the
frequency of heads as

f ≡ h
N

Normal Approximation to the Beta Distribution The Normal Normal Approximation to the Beta
Distribution The Normal Approxi-
mation to the Beta Distribution , for
large number of flips (N) of which a
fraction f ≡ h/N are successful is
given by

Beta(h, N) ∼ Normal (µ = f ,

σ =
√

f (1− f )/N
)

Approximation to the Beta Distribution , for large number of flips (N)
of which a fraction f ≡ h/N are successful is given by

Beta(h, N) ∼ Normal
(

µ = f , σ =
√

f (1− f )/N
)

To see how close this approximation can be, observe the following
two cases:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
(θ

)

µ=0.25
σ=0.12

3 heads and 9 tails

Beta

Normal

With ten times as many flips, we have
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ

0

2

4

6

8

10

12
P
(θ

)

µ=0.25
σ=0.04

30 heads and 90 tails

Beta

Normal

and the curves are so close as to be nearly identical! There still is This is an approximation, and as
such will certainly give seriously
incorrect answers under certain
circumstances. For example, in this
case, the Normal approximation
predicts that there is around a 1.8%
chance that the bent coin might
have a negative θ, or probability of
flipping heads (look a the Normal
curve to the left of θ = 0)! The
beta distribution is zero for any
value below zero or over one, and
thus will never lead to such absurd
answers.

a (small) probability for getting a negative θ, which is problematic
in theory but not typically in practice. To use the properties of the
Normal distribution here to quantify our uncertainty about the bent
coin. Given 30 heads and 90 tails, the best estimate for θ (i.e. the
top of the curve) is 0.25. Our uncertainty is quantified by the width
of the distribution, given by σ. Thus, we can be confident to a 95%
degree for θ within 2σ, or between 0.17 and 0.33 (0.25− 2 · 0.04 and
0.25 + 2 · 0.04, respectively).

The Binomial Distribution

Similarly, with the (discrete) binomial distribution (see Equation 3.3)
we have the Normal approximation.

Normal Approximation to the Discrete Binomial Distribution Normal Approximation to the
Discrete Binomial Distribution

Binomial(N, p) = Normal(µ = N · p,

σ =
√

N · p(1− p))Binomial(N, p) = Normal(µ = N · p, σ =
√

N · p(1− p))

with examples
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The Student’s t Distribution

For smallish data sets, 5 < N < 30, we can replace the estimate of the
mean from the Student’s t distribution to a Normal distribution with
an increased estimate for the deviation. It then becomes practical to
use the more convenient z-score to estimate credible intervals rather
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than the full t tables. The approximation in this domain looks like2 2 D. Berry. Statistics: A Bayesian
Perspective. Duxbury, 1996

Normal Approximation to the Student’s t Distribution For Normal Approximation to the
Student’s t Distribution For
smallish data sets, 5 < N < 30,

Studentdof=N−1(x̄, S/
√

N) ∼
Normal(x̄, k · S/

√
N)

k ≡ 1 +
20
N2

smallish data sets, 5 < N < 30,

Studentdof=N−1(x̄, S/
√

N) ∼ Normal(x̄, Sk/
√

N)

k ≡ 1 +
20
N2

Example 7.6 Estimating the True Length of an Object...Yet Again

Say we have an object, and 5 measurements of its length from the
same ruler but from different people,

5.1[cm], 4.9[cm], 4.7[cm], 4.9[cm], 5.0[cm]

Unlike earlier, let’s say that we don’t know the uncertainty (given this
ruler) of one measurement. What is the best estimate of the length?
Again, the best estimate should be given by the sample mean of these
5 samples,

µ̂ =
x1 + x2 + · · ·+ xN

N

=
5.1[cm] + 4.9[cm] + 4.7[cm] + 4.9[cm] + 5.0[cm]

5
= 4.92[cm]

with uncertainty related to the adjusted sample deviation,

S2 =
1

N − 1

(
(x1 − x̄)2 + · · ·+ (xN − x̄)2

)
=

1
5− 1

(
(5.1[cm]− 4.92[cm])2 + (4.9[cm]− 4.92[cm])2 + (4.7[cm]− 4.92[cm])2+

(4.9[cm]− 4.92[cm])2 + (5.0[cm]− 4.92[cm])2
)

= 0.024[cm]2

S =
√

0.024[cm]2 = 0.155[cm]

S√
N

=
0.155[cm]√

5
= 0.069[cm]

k = 1 +
20
52 = 1.8

k · S√
N

= 1.8 · 0.069[cm] = 0.124[cm]

yielding a final best estimate of

µ̂ = 4.92[cm]± 0.124[cm]

or (with 2σ range),

4.92[cm], 95% CI = [4.672[cm], 5.168[cm]]

Compare this range to the one shown in Example 7.5 on page 148.
The one here has a slightly larger range, which is a bit more conser-
vative than is needed, but the calculation is quite a bit easier.
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7.5 Summary

It is useful to see all of these results stemming from the same Bayes’
Recipe, applied to different models of the data and (possibly) differ-
ent prior probabilities. As we have stated, many of the simple cases
have been worked out by the mathematicians, so we don’t need to
do the work of deriving them. It will be our task to understand their
properties, to be able to apply them to real problems, and to under-
stand their consequences. One of the immediate observations that
we make is the prevalence of the Normal distribution, justifying our
detailed exploration of it in this chapter.

1 Proportions

Parameter of Interest: θ, the chances of a single event

Applications: coin flips, voting percentages, success in sports,
performance on tests

Form of the data: h successes in N total events

Model of the data:

data =

{
success , with probability θ

failure , otherwise (i.e. with probability 1− θ)

Posterior Probability:

Beta(θ|data)︸ ︷︷ ︸
posterior probability

∼
likelihood︷ ︸︸ ︷

Binomial(data|θ)× Uniform(θ)︸ ︷︷ ︸
prior probability

2 Magnitude with Known Deviation

Parameter of Interest: µ, the true magnitude of a quantity, given
the deviation, labeled by σ, from the central value

Applications: percentages with large samples, scientific measure-
ments such as weight and size of objects, time scales of events

Form of the data: N total data points, labeled x1, x2, · · · , xN , and
given known σ

Model of the data:

data = µ + uncertainty with probability Normal(µ = 0,known σ)

Posterior Probability:

Normal(µ2|data, σ)︸ ︷︷ ︸
posterior probability

∼
likelihood︷ ︸︸ ︷

Normal(data|µ, σ)× Uniform(µ)︸ ︷︷ ︸
prior probability
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3 Magnitude with Unknown Deviation

Parameter of Interest: µ, the true magnitude of a quantity, and
the unknown deviation, labeled by σ, from the central value

Applications: scientific measurements with small samples (less
than around 30), such as weight and size of objects, time scales
of a small number of events

Form of the data: N total data points, labeled x1, x2, · · · , xN

Model of the data:

data = µ + uncertainty with probability Normal(µ = 0, σ)

Posterior Probability:

P(µ, σ|data)︸ ︷︷ ︸
posterior probability

∼
likelihood︷ ︸︸ ︷

Normal(data|µ, σ)×Uniform(µ) ·Uniform(log σ)︸ ︷︷ ︸
prior probability

Student− T(µ|data)︸ ︷︷ ︸
posterior probability

∼ [P(µ, σ|data)]marginalized over σ

F(σ|data)︸ ︷︷ ︸
posterior probability

∼ [P(µ, σ|data)]marginalized over µ

7.6 Computer Examples

from s i e import *

Estimating Lengths

Known deviation, σ
x = [ 5 . 1 , 4 . 9 , 4 . 7 , 4 . 9 , 5 . 0 ]
sigma =0 .5

mu=sample_mean ( x )
N=len ( x )

d i s t =normal (mu, sigma/ s q r t (N) )
d i s t p l o t ( d i s t )

<matplotlib.figure.Figure at 0x10713c710>
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c r e d i b l e _ i n t e r v a l ( d i s t )

(4.4817387297117088, 4.9199999999999999, 5.358261270288291)

Unknown σ
mu=sample_mean ( x )
s=sample_deviation ( x )
p r i n t mu, s

4.92 0.148323969742

d i s t = t d i s t (N−1 ,mu, s/ s q r t (N) )

d i s t p l o t ( d i s t , xlim = [ 4 . 6 , 5 . 4 ] )

<matplotlib.figure.Figure at 0x1085b5c50>
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c r e d i b l e _ i n t e r v a l ( d i s t )

(4.7358314667008017, 4.9199999999999999, 5.1041685332991982)





8 Common Statistical Significance Tests

The basic idea of common statistical tests in the approach we have
taken has been the following:

1 Observe some data

2 Construct a model of the data, with a parameter that needs to be
estimated, such as the “true” single value (µ, in Section 7.3), or the
proportion of the event (θ, in Section 7.4).

3 Calculate the final, posterior probability of that parameter

4 “Test” to see if there is a significant (usually 95%) probability that
the parameter is not zero. In some cases we are not comparing

the parameter to zero but to some
theoretical expectation. Even there,
we are comparing the parameter
minus the theoretical expectation
to zero and thus we don’t lose
any generality in the procedure by
always comparing to zero.

5 If the test passes, then one can be reasonably confident that the
parameter is non-zero - that the effect is real. If the test fails, then
under the model, the possibility of a zero-effect cannot be reason-
ably excluded.

These tests are a subset of the parameter estimation techniques
covered in both Chapter 6 (Introduction to Parameter Estimation on
page 121) and Chapter 7 (Priors, Likelihoods, and Posteriors on page 139),
in the special case where we are interested in determining if there is
an effect at all. For example, we might be interested to see if a med-
ical treatment works, so we compare the before- and after-treatment
values to see if the difference is non-zero.

The tests that one typically employs in simple cases go by various
names, depending on the model. This chapter summarizes several of
the common ones, and applies them to some typical cases.

8.1 z-test

The z-test is the simplest test to use, and is perhaps the most com-
mon. It is used when we have the following assumptions:

1 We are modeling the data as a true value, µ, with uncertainty



160 statistical inference for everyone

2 We are modeling the as a Normal distribution with known devia-
tion, σ, as in Normal(0, σ).

3 We are assuming independence between the measurements.

The model of the data is

data = µ + uncertainty with probability Normal(µ = 0,known σ)

where µ represents the “true” value. The posterior distribution for µ

also follows a Normal distribution, with a smaller uncertainty, σ/
√

N
where N is the number of data points.

To use the z-test, we perform the following steps:

1 Calculate our best estimate for µ, denoted as µ̂.

2 Given the known uncertainty, σ of a single measurement, determine
the range of credible values for µ within the uncertainty of the
estimate for the N observations, σ/

√
N.

3 Test to see if the credible range includes zero.

4 If so, then the test passes, and we can be reasonably confident that
the parameter is non-zero - that the effect is real.

5 If the test fails, i.e. the credible range does not include zero, then
under the model the possibility of a zero-effect cannot be reason-
ably excluded.

There are several scenarios where we use the z-test, each with
the same procedure, differing only in the method of estimating the
“true” value µ.

1 For N independent observations, x1, x2, . . . , xN we have the best
estimate given by the sample mean, and uncertainty related to the
single-measurement deviation, σ, as

µ̂ =
x1 + x2 + · · ·+ xN

N
± σ/

√
N

2 When estimating a proportion, for a large number of events N of
which a fraction f ≡ h/N are successful, we have

µ̂ ≈ f

σ/
√

N ≈
√

f (1− f )/N

3 For smallish data sets, 5 < N < 30, where the uncertainty is not
known,

µ̂ ≈ x1 + x2 + · · ·+ xN
N

σ/
√

N ≈ kS/
√

N
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where we replace the known σ/
√

N from the previous case with
an estimate using the sample standard deviation and an adjust-
ment for small data set parameter k,

S2 =
1

N − 1

(
(x1 − x̄)2 + · · ·+ (xN − x̄)2

)
k ≡ 1 +

20
N2

8.2 What it means and doesn’t mean

For all of these tests, we use the vocabulary of “statistical signifi-
cance”, which needs to be further clarified.

Significance

There is a term used in the literature called statistical significance.1 1 Although the word “significant”
occurs in the term “statistically
significant,” it does not imply that
the result itself is important - it may
be a small, uninteresting effect, but
credibly non-zero. Perhaps a term
like “statistically detectable” would
be better, but we are unfortunately
bound to the historical use of the
term.

Roughly it means a value that is very unlikely to be zero (see Table 1.1
on page 51), or in other words, the value of zero is not within the
95% percentile. This is within 2 standard deviations of the value, so
the following estimated values are not statistically significant:

• 5± 3 - the two-deviation range is [-1,11] contains the value 0

• 7± 4

• −3± 2

but the following are statistically significant:

• 5± 2 - the two-deviation range is [1,9] does not contain the value 0

• 7± 3

• −3± 1

Statistical significance, at the very unlikely level (i.e. 95% percentile)
is often used as a rough guideline to publish a positive effect.

number of de-
viations away
from zero

term probability

1σ slightly likely/likely 0.7 (i.e. 7/10)
2σ very likely 0.95 (i.e. 19/20)
3σ extremely likely 0.01 (i.e. 1/100)

> 4σ virtually certain > 999, 999/1, 000, 000

Table 8.1: Rough guide for the
conversion of deviations away
from zero and the qualitative labels
for probability values for being a
significant deviation.
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An unintuitive consequence One consequence of this is that two stud-
ies that display different magnitudes for a quantity may not be statis-
tically significant in their difference. The following example is based
on an example from Gelman and Hill’s book on Data Analysis.2 Say 2 A. Gelman, J. Hill, and Ebooks

Corporation. Data analysis using
regression and multilevel/hierarchical
models, volume 625. Cambridge
University Press Cambridge, UK:,
2007

we have two measurements with means and standard deviations:

• 25±10

• 10±3

Further, let us suppose that we are interested in whether the mea-
surements are zero or not. The first measurement shows a significant
effect (the two-deviation range is [5,45] does not contain zero), and
the second one does as well (the two-deviation range is [4,16] does
not contain zero). The difference between them is

(25− 10)±
√

102 + 32 = 15± 10.4

which is not significant. One should be careful comparing the magni-
tudes and uncertainties of measurements!

8.3 Student-t-test

When we are not given the uncertainty of the measurements, σ, and
the data are insufficient to estimate the uncertainty, then we need to
estimate both the “true” value, µ, and the uncertainty. This leads to
a wider credible range for the “true” value. We can apply the same
testing procedure, by looking at the 95% credible region to see if it
includes zero, but this time the posterior distribution we use comes
from the so-called Student-t distribution. The odd name “Student-t test”

comes from the fact the test was
originally published by William
Gosset who worked at the Guinness
brewery in Dublin and his pen
name was “Student”.

1 For N independent observations, we still have the best estimate of
the “true” value given by the sample mean

µ̂ =
x1 + x2 + · · ·+ xN

N

2 The best estimate of the uncertainty of a single measurement is
given by the sample standard deviation

σ̂ = S

where S is the sample standard deviation

S2 =
1

N − 1

(
(x1 − x̄)2 + · · ·+ (xN − x̄)2

)
3 The credible region is determined by the 95% interval of the poste-

rior, Student-t distribution, of the following form

Studentdof=N−1(x̄, S/
√

N)
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4 Test to see if the credible range includes zero.

5 If so, then the test passes, and we can be reasonably confident that
the parameter is non-zero - that the effect is real.

6 If the test fails, i.e. the credible range does not include zero, then
under the model the possibility of a zero-effect cannot be reason-
ably excluded.

8.4 Computer Examples

from s i e import *

data=load_data ( ’ data/ i r i s . csv ’ )

x _ s e r t o s a =data [ data [ ’ c l a s s ’ ]== ’ I r i s−s e t o s a ’ ] [ ’ p e t a l length [cm] ’ ]

x= x _ s e r t o s a
mu=sample_mean ( x )
N=len ( x )
sigma=sample_deviation ( x )/ s q r t (N)
t _ s e r t o s a = t d i s t (N,mu, sigma )

p r i n t " t o t a l number of data points : " ,N
p r i n t " bes t es t imate : " ,mu
p r i n t " u n c e r t a i n t y : " , sigma

total number of data points: 50

best estimate: 1.464

uncertainty: 0.0245381834898

new_length =1 .7

d i s t p l o t ( t _ s e r t o s a , l a b e l = ’ p e t a l length ’ , xlim = [ 1 . 3 7 , 1 . 8 ] ,
q u a r t i l e s = [ . 0 1 , 0 . 0 5 , . 5 , . 9 5 , . 9 9 ] ,

)
ax=gca ( )
ax . axv l ine ( 1 . 7 , c o l o r = ’ r ’ )
s a v e f i g ( ’ . . / . . / f i g s / z _ t e s t _ i r i s . pdf ’ )

<matplotlib.figure.Figure at 0x10f9d2710>
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9 Applications of Parameter Estimation and Inference

9.1 Normal Model - Inference about Means

Example 9.1 Iris petal lengths - Best estimate

1.4 1.4 1.3 1.5 1.4
1.7 1.4 1.5 1.4 1.5
1.5 1.6 1.4 1.1 1.2
1.5 1.3 1.4 1.7 1.5
1.7 1.5 1.0 1.7 1.9
1.6 1.6 1.5 1.4 1.6
1.6 1.5 1.5 1.4 1.5
1.2 1.3 1.5 1.3 1.5
1.3 1.3 1.3 1.6 1.9
1.4 1.6 1.4 1.5 1.4

Table 9.1: Iris petal lengths, in
centimeters, for Iris type Setosa.

Table 9.1 shows data for the lengths (in centimeters) of the petals
of one species of Iris flower1. If we want to estimate the “true” length 1 K. Bache and M. Lichman. UCI

machine learning repository, 2013.
URL http://archive.ics.uci.edu/

ml

of the the petal for this species, given all of these examples, we would
apply the following model of the data:

0 µ
(unknown true value)

0.0

0.5

1.0

1.5

2.0

σ
(known deviation)

data = true value + Normal(mean=0,known σ)

or equivalently

data = Normal(mean=true value,known σ)

The resulting distribution for the “true value”, µ, is also a Normal
distribution (Section 7.3),

P(µ|data, σ) = Normal(x̄, σ/
√

N)

where the best estimate of the true value, µ is the sample mean, x̄,
and the uncertainty is related to the sample deviation (which we’re

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
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going to take as the “known” deviation, σ ∼ 0.174) in this case. Thus,

µ̂ = x̄ =
1.4 + 1.4 + 1.3 + 1.5 + · · ·+ 1.6 + 1.4 + 1.5 + 1.4

50
= 1.464

and the full answer, with uncertainty, is

µ̂ = 1.464[cm]± 0.174√
50

[cm]

= 1.464[cm]± 0.025[cm]

Example 9.2 Iris petal lengths - A different species?

Here we apply the z-test (Section z-test on page 159) to a new
observation to see if there is reason to believe it to be a different
species. Imagine we have a single observation of another iris with
petal length 2.5 [cm]. Is this likely to be the same type as the Setosa
type above? As outlined in Section 7.2, we get the best estimate for
the difference as:

µdiff = 2.5− 1.464 = 1.036

with uncertainty the same as the uncertainty of the Setosa type, so the
final estimate with uncertainty is:

1.036[cm]± 0.025[cm]

which is

1.036[cm]

0.025[cm]
= 41 deviations away from zero!

which makes it virtually certain to be a different type (see Table 8.1).

9.2 Normal Model Again - Inference about Means and Deviations

Setosa 1.4 1.4 1.3 1.5 1.4
Virginica 6.0 5.1 5.9 5.6 5.8
Versicolor 4.7 4.5 4.9 4.0 4.6

Table 9.2: Subset of iris petal
lengths, in centimeters, for iris
types Virginica, Setosa, and Versi-
color.

Example 9.3 Iris petal lengths - Significantly different?

In this example we apply the t-test (Section Student-t-test on
page 162) to a subset of the iris samples, to see if the different species
can be reasonably separated using their petal lengths. Shown in Ta-
ble 9.2 is a very small subset of the full iris petal-length data. Are the
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types Virginica and Versicolor longer than the type Setosa? Is the Vir-
ginica longer than Versicolor? For each of these, we need to specify the
model, determine the best estimate for the parameters of the model,
and then compare the distributions.

The model we will use is the simple Normal model,

data = Normal(mean=true value,unknown σ)

which is the same as the previous example, except that the deviation,
σ, is unknown. In addition to being unknown, there are so few data
points that the deviation can’t be well approximated with the sample
deviation.

The resulting distribution for the “true value”, µ, is a Student-t
distribution (Section 7.3),

P(µ|data) = Studentdof=N−1(x̄, S/
√

N)

The best estimates for the true length-values of each type is given by
their sample means,

µ̂setosa =
1.4 + 1.4 + 1.3 + 1.5 + 1.4

5
= 1.40

µ̂virginica =
6.0 + 5.1 + 5.9 + 5.6 + 5.8

5
= 5.68

µ̂versicolor =
4.7 + 4.5 + 4.9 + 4.0 + 4.6

5
= 4.54

and the sample deviations for each is given by

Ssetosa =

√
1

5− 1
· ((1.4− 1.40)2 + (1.4− 1.40)2 + (1.3− 1.40)2 + (1.5− 1.40)2 + (1.4− 1.40)2)

= = 0.07

Svirginica =

√
1

5− 1
· ((6.0− 5.68)2 + (5.1− 5.68)2 + (5.9− 5.68)2 + (5.6− 5.68)2 + (5.8− 5.68)2)

= = 0.36

Sversicolor =

√
1

5− 1
· ((4.7− 4.54)2 + (4.5− 4.54)2 + (4.9− 4.54)2 + (4.0− 4.54)2 + (4.6− 4.54)2)

= 0.34

The posterior probability distributions, shown in Figure 9.1, have
the following form:

P(µsetosa|data) = Studentdof=4(1.40, 0.07/
√

5)

P(µvirginica|data) = Studentdof=4(5.68, 0.36/
√

5)

P(µversicolor|data) = Studentdof=4(4.64, 0.34/
√

5)

It is clear from the picture that they are very well separated, but we
can quantify this by looking at the probability that the difference
between their means is greater than zero.
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Figure 9.1: Probability distributions
for the subset of iris petal lengths.
Each distribution follows a Student-
t form.

The probability of their difference approximately takes the form of This approximation is called
Welch’s method. The exact anal-
ysis is beyond this book, but
numerically one can calculate
it and it doesn’t differ from
this approximate analysis in
any significant way. Essentially
you calculate P(µversicolor >
µvirginica|data) by adding up the
P(µversicolor|data)× P(µvirginica|data)
for all possible lengths where
versicolor is longer than virginica.

a Student’s t distribution, with the same center and deviation shown
for the Normal in Section 7.2. Here we do the calculation between the
closest two iris types, Virginica and Versicolor:

µdiff = 5.68− 4.64 = 1.04

σdiff =

√
0.362

5
+

0.342

5
= 0.22

The degrees of freedom used for this Student’s t distribution is ap-
proximately the smallest one from the two samples, or in this case
(since both samples have the same number of data points), dof=4.
The resulting posterior probability distribution for the difference of
means is shown in Figure 9.2.

We observe that the difference of the means is over 4 times the
deviation away from zero, so even with 4 degrees of freedom, this is
significant at the 99% level. We can be highly certain that these two
species have different petal lengths, and that the difference observed
is not just a product of the random sample.

Example 9.4 Ball Bearing Sizes

Here’s a data data set, measuring the size of ball bearings2 from 2 David J Hand, Fergus Daly, K Mc-
Conway, D Lunn, and E Ostrowski.
A handbook of small data sets, vol-
ume 1. CRC Press, 2011

two different production lines.
We can ask questions such as:

• What is our best estimate of the size of a ball bearing, given one of
the production lines?
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0.57
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0.70

25%

0.88
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1.04
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1.20

90%

1.38

95%

1.51

99%

1.86

Figure 9.2: Probability distributions
for the difference between iris petal
lengths for the closest two iris
types, Virginica and Versicolor. The
distribution follows a Student-t
form, and clearly shows significant
probability (greater than 99%) for
being greater than zero.

First line [microns]
1.18 1.42 0.69 0.88 1.62 1.09 1.53 1.02 1.19 1.32

Second line [microns]
1.72 1.62 1.69 0.79 1.79 0.77 1.44 1.29 1.96 0.99

Table 9.3: Production lines are pro-
duce a ball bearing with a diameter
of approximately 1 micron. Ten ball
bearings were randomly picked
from the production line (i.e. the
First line) at one time, and then
again for a different production line
(i.e. the Second line). Romano, A.
(1977) Applied Statistics for Science
and Industry.

• Is it reasonable to believe that there is a difference in the size pro-
duced between the two lines?

Example 9.5 What is the best estimate (and uncertainty) for each of the
two production lines of ball bearings?

Using the normal approximation to the Student-T distribution
(Section 7.4), we have the best estimates of the two lines as

µ1 =
1.180000 + 1.420000 + 0.690000 + · · ·+ 1.190000 + 1.320000

10
= 1.194

µ2 =
1.720000 + 1.620000 + 1.690000 + · · ·+ 1.960000 + 0.990000

10
= 1.406

and their uncertainties calculated by first calculating the sample
deviations

S1 =

√
1

10− 1
· ((1.18− 1.194)2 + (1.42− 1.194)2 + · · ·+ (1.19− 1.194)2 + (1.32− 1.194)2)

= 0.289

S2 =

√
1

10− 1
· ((1.72− 1.406)2 + (1.62− 1.406)2 + · · ·+ (1.96− 1.406)2 + (0.99− 1.406)2)

= 0.428
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and then scaling the deviations by the number of data points

σ1 = S1/sqrt10 = 0.092

σ2 = S2/sqrt10 = 0.135

yielding the best estimates and uncertainties for the two production
lines

• Production line 1: 1.194 [microns]± 0.092[microns]

• Production line 2: 1.406 [microns]± 0.135[microns]

or looking at the 95% CI for each line This is just the ±2 · σ range

• Production line 1: 1.01[microns] - 1.378[microns]

• Production line 2: 1.136[microns] - 1.676[microns]

Roughly, given that these intervals overlap, there is not strong evi-
dence that there is a difference between the two lines.

Example 9.6 Is it reasonable to believe that there is a difference in the size
produced between the two lines?

Using the best estimate of the difference, we get

δ12 = µ2 − µ1 = 0.212

with the uncertainty in the difference from the individual uncertain-
ties,

σ12 =
√

σ2
1 + σ2

2 = 0.163

So the 2 · σ uncertainty range for the difference,

[0.212− 2 · 0.163, 0.212 + 2 · 0.163] = [−0.114, 0.538]

includes the value zero, which we interpret as a statement that the
difference is not statistically significant. In other words, it is not reason-
able to believe that there is a difference in the size produced between
the two lines.

9.3 Beta Model - Inference About Proportions

Example 9.7 The Sunrise Problem

The sunrise problem, as first stated by Laplace, is “What is the
probability that the sun will rise tomorrow?” We’ll start with the as-
sumption that initially one has never seen a sunrise, and then observe
a year of sunrises each morning with no morning without one. Thus
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we have the form of the data as h successes (days with a sunrise) in
N total days. Our model of the data is specified as before with a bi-
nomial distribution, resulting in the posterior Beta, as described in
Section 6.6.

After a only 10 years of watching sunrises, and no failures of a
sunrise, the best estimate for the probability of a sunrise is

θ̂median ≈ h + 2
N + 4

=
3650 + 2
3650 + 4

= 0.9995

making it virtually certain for a sunrise.

Example 9.8 Cancer Rates

This example is from Donald Berry’s Statistics textbook3: 3 D. Berry. Statistics: A Bayesian
Perspective. Duxbury, 1996

pp 192: A study (Murphy and Abbey, Cancer in Families, 1959) ad-
dressed the question of whether cancer runs in families. The investiga-
tor identified 200 women with breast cancer and another 200 women
without breast cancer and asked them whether their mothers had had
breast cancer. Of the 400 women in the two groups combined, 10 of the
mothers had had breast cancer. If there is no genetic connection, then
about half of these 10 would come from each group.

The data is that 7 of the daughters had cancer and 3 did not. Is there
strong evidence of a connection?

The proper way, assuming total initial ignorance, is to use the Beta
distribution:

P (θcancer|data) = Beta(h = 7, N = 10)

which has a median of θ̂cancer = 0.68, but a 95% credible interval of
θ̂cancer = 0.39 up to θ̂cancer = 0.89. This means there is not strong
evidence of an effect.

Example 9.9 Cancer Rates - Normal Approximation

We can estimate the the Beta distribution median and credible
intervals with a Normal distribution, by using the “assuming 2 suc-
cesses and 2 failures” method.

θ̂cancer =
h + 2
N + 4

=
7 + 2

10 + 4
= 0.643

and

σ =
√

θ̂cancer(1− θ̂cancer)/(N + 4)

=
√

0.643(1− 0.643)/(10 + 4)

= 0.128
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So the approximate 95% credible interval is

θ̂cancer ± 2σ

which is between 0.387 and 0.899, again with the same conclusion of
no strong evidence of an effect.

Example 9.10 Will it rain on the 4th of July?

In the United States, the 4
th of July is Independence Day, and is

known for parades. The oldest continuously running parade is in
Bristol, RI, and it runs rain or shine. Is it likely to rain on the pa-
rade? Climate data from nearby Providence is here from wunder-
ground.com:

We can estimate the the Beta distribution median and credible
intervals with a Normal distribution, by using the “assuming 2 suc-
cesses and 2 failures” method.

θ̂rain =
h + 2
N + 4

=
19 + 2
48 + 4

= 0.404

around 40%, less than an even chance (50%) of rain, but

σ =
√

θ̂rain(1− θ̂rain)/(N + 4)

=
√

0.404(1− 0.404)/(48 + 4)

= 0.068

So the approximate 95% credible interval is

θ̂rain ± 2σ

which is between 0.268 and 0.540. This is not strong evidence against
a purely fair and random “coin flip” for rain on the 4

th of July.

Example 9.11 Hot Hand Reexamined
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In Tversky and Gilovich4 we have the following data for Larry 4 A. Tversky and T. Gilovich. The
cold facts about the" hot hand" in
basketball. Anthology of statistics in
sports, 16:169, 2005

Bird free throws in basketball:

• Given each of 53 missed shots, Larry Bird successfully shot 48 of
the next attempt.

• Given each of 285 successful shots, Larry Bird successfully shot
251 of the next attempt.

This data alone almost suggests an anti-hot-hand (where you’re
less likely to make a successful attempt following a successful shot).
However, we can demonstrate that these numbers are not in fact
statistically different. Given the relatively large number of attempts
(greater than 30) we can use the Normal approximation to estimate
the two probabilities of success:

θafter a miss =
48 + 2
53 + 4

= 0.877

θafter a success =
251 + 2
285 + 4

= 0.875

and the uncertainty,

σafter a miss =
√

0.877(1− 0.877)/(53 + 4) = 0.044

σafter a success =
√

0.875(1− 0.875)/(285 + 4) = 0.019

making the 95% credible intervals for probability of a Larry Bird
successful attempt

95%CIafter a miss = 0.877± 2 · 0.044 = [0.789, 0.965]

95%CIafter a success = 0.875± 2 · 0.019 = [0.837, 0.913]

Notice that the intervals overlap, so there is no significant evidence
for a difference in Larry Bird’s success following another success
or following a miss. Thus, there is no significant evidence for a hot
hand, or an anti-hot hand.

9.4 Model Construction

In practice, we either don’t know what the optimum model we need
is, or the needs of the model change as we obtain more data.

We start with the data in Table 9.4 for the mass of pennies of vari-
ous years (shown graphically in Figure 9.3)5: 5 this data was extracted from

student measurements during a
physics lab

We are going to ignore the measurement uncertainties in these
individual measurements, because they are quite small.

Example 9.12 Mass of the Penny, Model 1 - One True Value
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Year Mass [g]
1960 3.133

1961 3.083

1962 3.175

1963 3.120

1964 3.100

1965 3.060

1966 3.100

1967 3.100

1968 3.073

1969 3.076

1970 3.100

1971 3.110

1972 3.080

1973 3.100

1974 3.093

Table 9.4: Mass of Pennies from
1960 to 1974.

1960 1962 1964 1966 1968 1970 1972 1974
year
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Figure 9.3: Mass of Pennies from
1960 to 1974.
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If we assume a model that states that there is a “true” value and
the variation from this “true” value caused by some unknown pro-
cess, but with known magnitude, σ,

data = true value + Normal(mean=0,known σ)

or equivalently

data = Normal(mean=true value,known σ)

we can get the best estimate and uncertainty in that estimate from
the following procedure, Using the normal approximation to the
Student-T distribution (Section 7.4):

µ̂ = x̄± k · S/
√

N

where the symbols in this equation are

1 the number of data points, N.

2 the best estimate for the true value, µ̂, is given by the sample mean,
x̄:

x̄ = =
x1 + x2 + · · ·+ xN

N

=
3.133g + 3.083g + · · ·+ 3.093g

15
= 3.100g

3 The uncertainty is directly related to the sample standard deviation,
S:

S =

√
(x1 − x̄)2 + (x2 − x̄)2 + · · ·+ (xN − x̄)2

N − 1

=

√
(3.133g− 3.100g)2 + (3.083− 3.100g)2 + · · ·+ (3.093− 3.100g)2

14
= 0.0278g

4 The scale factor, k, adjusts for the small number of data points -
there is more uncertainty in our estimate when there are fewer
data points:

k = 1 +
20
N2

= 1 +
20
152

= 1.0889

Finally, we have the best estimate and uncertainty for the pennies
in this dataset:

µ̂ = x̄± k · S/
√

N

= 3.100g± 1.0889 · 0.0278g/
√

15

= 3.100g± 0.0078g
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or, as a 99% credible range (3 times the uncertainty written above),
we have, (see also Figure 9.4)

99% CI for µ = 3.100g± 3× 0.0078g

= [3.077g, 3.124g]

Example 9.13 Mass of the Penny, Model 1 - One True Value with More
Data

Now we collect the additional data with more recent pennies
shown in Table 9.5. We can follow the same procedure, assuming
our original model of one “true” value, to get the best estimate and
uncertainty for this model, combining the two data sets.

Year Mass [g]
1989 2.516

1990 2.500

1991 2.500

1992 2.500

1993 2.503

1994 2.500

1995 2.497

1996 2.500

1997 2.494

1998 2.512

1999 2.521

2000 2.499

2001 2.523

2002 2.518

2003 2.520

Table 9.5: Mass of Pennies from
1989 to 2003.

µ̂ = x̄± k · S/
√

N

where the symbols in this equation are

1 the number of data points, N = 30.

2 the best estimate for the true value, µ̂, is given by the sample mean,
x̄:

x̄ =
3.133g + 3.083g + · · ·+ 2.520g

30
= 2.804g
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Best estimate of "true" value: µ̂=3.100±0.0078

99% CI: [3.077,3.124]
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Figure 9.4: Mass of Pennies from
1960 to 1974, with best estimates
and 99% CI (i.e. 3σ) uncertainty.
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3 The sample standard deviation, S:

S =

√
(3.133g− 2.804g)2 + (3.083− 2.804g)2 + · · ·+ (2.520− 2.804g)2

29
= 0.3024g

4 The scale factor, k, adjusting for the small number of data points:

k = 1 +
20
302

= 1.0222

Finally, we have the best estimate and uncertainty for the pennies
in this full dataset:

µ̂ = x̄± k · S/
√

N

= 2.804g± 1.0222 · 0.3024g/
√

30

= 2.804g± 0.0564g

or, as a 99% credible range (3 times the uncertainty written above),
we have,

99% CI for µ = 2.804g± 3× 0.0564g

= [2.634g, 2.973g]

There are several things one should notice:

1 The scale factor, k, is less for 30 data points than it is for 15 data
points. This is because the adjustment for small number of data
points gets less relevant as we obtain more data. This is what we
expect.

2 Despite there being twice as much data, our uncertainty increased.
This is unusual, if our model is correct - more data should sharpen
the estimates. Although it is possible that adding more data in-
creased the system variability somehow, it is more likely that some
assumption of our model is incorrect. This becomes obvious when
we look at the result graphically, shown in Figure 9.5.

This should highlight a few things:

1 Always look at your data graphically. What you might miss look-
ing at a table of numbers, you’ll catch with a picture.

2 Assume your model is wrong, and outline other possible models
ahead of time and explore them. The most obvious improvement
in this problem is to notice that we are dealing with two separate
“true” values, possibly caused by a change in the manufacturing
materials.
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Figure 9.5: Mass of Pennies from
1960 to 2003, with best estimates
and 99% CI (i.e. 3σ) uncertainty.

Example 9.14 Mass of the Penny, Model 2 - Two True Values

In this model, we assume there are two true values:

• µ1 - before 1975

• µ2 - after 1988

There are two roughly equivalent ways of telling whether there is
a significant difference.

Overlapping Intervals The first is the easiest to do mathematically,
and yields a nice picture: obtain the best estimates for µ1 and µ2,
and see if their 99% credible intervals overlap. From this analysis
(identical to the previous examples, however we leave the details of
the calculation to the student), we get (see Figure 9.6):

• Best estimate for µ1

µ̂1 = 3.100± 0.0078

with 99% CI: [3.077,3.124].

• Best estimate for µ2

µ̂2 = 2.507± 0.0029

with 99% CI: [2.498,2.516]
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where the 99% credible intervals (CI) clearly do not overlap, thus
there is a statistically significant difference between them.
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Figure 9.6: Mass of Pennies from
1960 to 2003, with best estimates
for the two true values and their
99% CI (i.e. 3σ) uncertainty plotted.
There is clearly no overlap in their
credible intervals, thus there is a
statistically significant difference
between them.

Is the Difference Zero? The proper way is to estimate the quantity
µ1 − µ2 and test to see if it is greater than zero, as shown in Sec-
tion 7.2 on page 144. The estimate of this quantity, which we’ll call
δ12 = µ1 − µ2 is related to the means and uncertainties of two data
sets

δ̂12 = x̄1 − x̄2 ± σ12

σ12 =
√

σ2
1 + σ2

2

σ1 = k1S1/
√

N1 (uncertainty from data set 1)

σ2 = k2S2/
√

N2 (uncertainty from data set 2)

where the sample standard deviations, S1 and S2, and the scale fac-
tors, k1 and k2 were calculated earlier. This leads to, for this data set,

δ̂12 = 0.593g± 0.008g

with the 99% credible interval [0.568g, 0.618g], the distribution shown
in Figure 9.7. Again, the estimated quantities are clearly different sta-
tistically: the value of zero is well outside of the 99% credible interval
for δ12.

9.5 Computer Examples
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Figure 9.7: Difference in the esti-
mated values of the pre- and post
1975 pennies, µ1 − µ2. The value
zero is clearly outside of the 99% in-
terval of the difference, thus there is
a statistically significant difference
between the two values µ1 and µ2.

from s i e import *

Iris Example

data=load_data ( ’ data/ i r i s . csv ’ )

x _ s e r t o s a =data [ data [ ’ c l a s s ’ ]== ’ I r i s−s e t o s a ’ ] [ ’ p e t a l length [cm] ’ ]
x _ v i r g i n i c a =data [ data [ ’ c l a s s ’ ]== ’ I r i s−v i r g i n i c a ’ ] [ ’ p e t a l length [cm] ’ ]
x _ v e r s i c o l o r =data [ data [ ’ c l a s s ’ ]== ’ I r i s−v e r s i c o l o r ’ ] [ ’ p e t a l length [cm] ’ ]

p r i n t x _ s e r t o s a [ : 1 0 ] # p r i n t the f i r s t 10

0 1.4

1 1.4

2 1.3

3 1.5

4 1.4

5 1.7

6 1.4

7 1.5

8 1.4

9 1.5

Name: petal length [cm], dtype: float64
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x= x _ s e r t o s a
mu=sample_mean ( x )
N=len ( x )
sigma=sample_deviation ( x )/ s q r t (N)
t _ s e r t o s a = t d i s t (N,mu, sigma )

p r i n t " t o t a l number of data points : " ,N
p r i n t " bes t es t imate : " ,mu
p r i n t " u n c e r t a i n t y : " , sigma

total number of data points: 50

best estimate: 1.464

uncertainty: 0.0245381834898

x= x _ v e r s i c o l o r
mu=sample_mean ( x )
N=len ( x )
sigma=sample_deviation ( x )/ s q r t (N)
t _ v e r s i c o l o r = t d i s t (N,mu, sigma )

p r i n t " t o t a l number of data points : " ,N
p r i n t " bes t es t imate : " ,mu
p r i n t " u n c e r t a i n t y : " , sigma

total number of data points: 50

best estimate: 4.26

uncertainty: 0.0664554477121

x= x _ v i r g i n i c a
mu=sample_mean ( x )
N=len ( x )
sigma=sample_deviation ( x )/ s q r t (N)
t _ v i r g i n i c a = t d i s t (N,mu, sigma )

p r i n t " t o t a l number of data points : " ,N
p r i n t " bes t es t imate : " ,mu
p r i n t " u n c e r t a i n t y : " , sigma

total number of data points: 50

best estimate: 5.552

uncertainty: 0.078049696361

d i s t p l o t 2 ( [ t _ s e r t o s a , t _ v e r s i c o l o r , t _ v i r g i n i c a ] , show_quart i les=Fa l se )

<matplotlib.figure.Figure at 0x1058d9690>
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d i s t p l o t ( t _ v i r g i n i c a )

c r e d i b l e _ i n t e r v a l ( t _ v e r s i c o l o r )

(4.1265203051077082, 4.2599999999999998, 4.3934796948922914)

c r e d i b l e _ i n t e r v a l ( t _ v i r g i n i c a )

(5.3952325713636533, 5.5519999999999996, 5.7087674286363459)

Sunrise
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d i s t =beta ( h=365 ,N=365)

d i s t p l o t ( d i s t )

c r e d i b l e _ i n t e r v a l ( d i s t )

(0.98997171634278669, 0.99810794743679487, 0.99993082805373457)

Cancer Example

d i s t =beta ( h=7 ,N=10)

d i s t p l o t ( d i s t , f i g s i z e = ( 8 , 5 ) )
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c r e d i b l e _ i n t e r v a l ( d i s t )

(0.39025744042757882, 0.67619553741481253, 0.89073655618090186)

Essentially no evidence of any effect over 50 percent.

Pennies

data1=load_data ( ’ data/pennies1 . csv ’ )
p r i n t data1

year , mass=data1 [ ’ Year ’ ] , data1 [ ’ Mass [ g ] ’ ]

Year Mass [g]

0 1960 3.133

1 1961 3.083

2 1962 3.175

3 1963 3.120

4 1964 3.100

5 1965 3.060

6 1966 3.100

7 1967 3.100

8 1968 3.073

9 1969 3.076

10 1970 3.100

11 1971 3.110

12 1972 3.080

13 1973 3.100

14 1974 3.093

p l o t ( year , mass , ’ o ’ )
x l a b e l ( ’ year ’ )
y l a b e l ( ’ Mass per Penny [ g ] ’ )

<matplotlib.text.Text at 0x1087c2d90>



186 statistical inference for everyone

x=mass
mu=sample_mean ( x )
N=len ( x )
sigma=sample_deviation ( x )/ s q r t (N)
t_penny1= t d i s t (N,mu, sigma )

d i s t p l o t ( t_penny1 , l a b e l = ’ mass [ g ] ’ )

CI= c r e d i b l e _ i n t e r v a l ( t_penny1 , percentage =99)
p r i n t CI
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(3.0790129206702002, 3.1002000000000001, 3.1213870793298)

p l o t ( year , mass , ’ o ’ )
c r e d i b l e _ i n t e r v a l _ p l o t ( t_penny1 , percentage =99)
x l a b e l ( ’ year ’ )
y l a b e l ( ’ Mass per Penny [ g ] ’ )

<matplotlib.text.Text at 0x1087fcf10>

Do the 2 datasets
data2=load_data ( ’ data/pennies2 . csv ’ )
p r i n t data2

year1 , mass1=year , mass
year2 , mass2=data2 [ ’ Year ’ ] , data2 [ ’ Mass [ g ] ’ ]

Year Mass [g]

0 1989 2.516

1 1990 2.500

2 1991 2.500

3 1992 2.500

4 1993 2.503

5 1994 2.500

6 1995 2.497

7 1996 2.500

8 1997 2.494

9 1998 2.512

10 1999 2.521

11 2000 2.499

12 2001 2.523

13 2002 2.518
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14 2003 2.520

x=mass1

mu=sample_mean ( x )
N=len ( x )
sigma=sample_deviation ( x )/ s q r t (N)
t_penny1= t d i s t (N,mu, sigma )

x=mass2

mu=sample_mean ( x )
N=len ( x )
sigma=sample_deviation ( x )/ s q r t (N)
t_penny2= t d i s t (N,mu, sigma )

d i s t p l o t 2 ( [ t_penny1 , t_penny2 ] , show_quart i les=False , l a b e l = ’ mass [ g ] ’ )
legend ( [ r ’ $\mu_1$ ’ , r ’ $\mu_2$ ’ ] )

<matplotlib.figure.Figure at 0x1087d3f10>

<matplotlib.legend.Legend at 0x1088198d0>

p l o t ( year1 , mass1 , ’ o ’ )
c r e d i b l e _ i n t e r v a l _ p l o t ( t_penny1 , percentage =99)
p l o t ( year2 , mass2 , ’ ro ’ )
c r e d i b l e _ i n t e r v a l _ p l o t ( t_penny2 , percentage =99 , xlim = [ 1 9 8 9 , 2 0 0 5 ] )
x l a b e l ( ’ year ’ )
y l a b e l ( ’ Mass per Penny [ g ] ’ )

<matplotlib.text.Text at 0x10907e310>
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Distribution of the difference, normal approximation
N1=len ( mass1 )
N2=len ( mass2 )

mu1=sample_mean ( mass1 )
mu2=sample_mean ( mass2 )

sigma1 =(1+20 .0/N1 * * 2 ) * sample_deviation ( mass1 )/ s q r t (N1)
sigma2 =(1+20 .0/N2 * * 2 ) * sample_deviation ( mass2 )/ s q r t (N1)

de l ta_12=mu1−mu2

sigma_delta12= s q r t ( sigma1 **2+ sigma2 * * 2 )

d i s t _ d e l t a =normal ( del ta_12 , s igma_delta12 )
d i s t p l o t ( d i s t _ d e l t a )
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clearly larger than zero at well over the 99

Ball Bearing Sizes

data1 = [ 1 . 1 8 , 1 . 4 2 , 0 . 6 9 , 0 . 8 8 , 1 . 6 2 , 1 . 0 9 , 1 . 5 3 , 1 . 0 2 , 1 . 1 9 , 1 . 3 2 ]
data2 = [ 1 . 7 2 , 1 . 6 2 , 1 . 6 9 , 0 . 7 9 , 1 . 7 9 , 0 . 7 7 , 1 . 4 4 , 1 . 2 9 , 1 . 9 6 , 0 . 9 9 ]
N1=len ( data1 )
N2=len ( data2 )

mu1=sample_mean ( data1 )
mu2=sample_mean ( data2 )
p r i n t mu1 , mu2

1.194 1.406

S1=sample_deviation ( data1 )
S2=sample_deviation ( data2 )
p r i n t S1 , S2

0.289681817786 0.428309337849

sigma1=S1/ s q r t (N1)
sigma2=S2/ s q r t (N2)
p r i n t sigma1 , sigma2

0.091605434094 0.135443305072

d i s t 1 =normal (mu1 , sigma1 )
d i s t 2 =normal (mu2 , sigma2 )
d i s t p l o t 2 ( [ d i s t1 , d i s t 2 ] , show_quart i les=False , l a b e l = ’ s i z e [ microns ] ’ )
legend ( [ r ’ $\mu_1$ ’ , r ’ $\mu_2$ ’ ] )
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<matplotlib.figure.Figure at 0x105d61390>

<matplotlib.legend.Legend at 0x108ca1ad0>





10 Multi-parameter Models

We have already met examples of multiple parameter estimation in
the case of unknown uncertainty, where we have to estimate both
the “true” value, µ, and the uncertainty, σ. In this chapter, we intro-
duce the model of linear regression, which has multiple “true” value
parameters and their uncertainty. In the simple cases, we can calcu-
late the estimates by hand and apply the same testing procedures
as described in Chapter 8 (Common Statistical Significance Tests on
page 159). In the more complex cases we will have to rely on the
computer to give us the estimates, but we can still interpret them in
the same way as before.

10.1 Simple Linear Regression

In simple linear regression, we are given data consisting of two vari-
ables, typically denoted x and y, where the value of one (y) depends
on the other (x). For example, consider the following data of heights
(x) and shoe sizes (y) of a small number of individuals1 shown in 1

Table 10.1 and Figure 10.1. By eye we can see a direct correlation - the
taller the person the larger shoe size.

Height [inches] Shoe Size

64.0 7

70.0 9

64.0 8

71.0 11

69.0 12

68.0 9

69.0 10

61.0 6

68.0 10

70.0 9

Table 10.1: Heights (in inches) and
shoe sizes from a subset of McLaren
(2012) data.

We propose a model of this data of the following linear form:

y = mx + b
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Figure 10.1: Heights (in inches) and
shoe sizes from a subset of McLaren
(2012) data.

where m is the slope and b is the intercept. Clearly this data doesn’t
form a perfect line, so there is some uncertainty in the slope, inter-
cept, and predicted y values. We assume a Normal distribution for
the uncertainties in the data, so the statistical model looks like, for
each data point,

yi = mxi + b + Normal(0, σ)

where we want to obtain estimates, m̂ and b̂, of the “true” values of
the slope and intercept, respectively, as well as their uncertainties.
This is obtained by getting the posterior probability of the parame-
ters,

P(m, b|data)

Following our standard procedure,

1 Specify the prior probabilities for the parameters being considered.
For most simple cases we begin with absolutely no knowledge of
its value, and thus use a uniform prior probability for each parame-
ter.

2 Write the top of Bayes’ Rule,

P(m, b|data) ∼ P(data|m, b)︸ ︷︷ ︸
Normal uncertainties

× P(m, b)︸ ︷︷ ︸
uniform prior
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3 Add up the values, and divide by this sum to get the final pos-
terior probabilities. This is done by the mathematicians, and we
simply summarize the results here.

we obtain the posterior distributions for the parameters m and b.
The calculations get too detailed to do by hand, but are very easy
with the computer. For the shoe size data in Table 10.1 we get the
distributions shown in Figures 10.2 and 10.3 for the slope and inter-
cept, respectively. The most probable values then lead to the best fit,
shown in Figure 10.4.

The Student-t test clearly shows that the slope is non-zero (well
over 95% of the distribution lies to the right of zero), denoting a sta-
tistically significant effect on shoe size from height. The magnitude of
the slope, slope = 0.42, can be interpreted that every inch of height
leads to a 0.42 increase in shoe size on average.
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Figure 10.2: Posterior distribution
for the slope for the linear model on
the shoe size data subset.

Mean Squared Error

Another way of looking at the same idea is to introduce the notion
of Mean Squared Error (MSE). This is defined to be the number re-
sulting from taking the predicted values minus the observed values,
squaring them, and taking their mean. The squaring ensures that
deviations from the predictions both too high and too low are con-
sidered the same. The closer the prediction overall, the smaller the
resulting MSE. Mathematically this is written as

MSE ≡
∑i

(
yi − (m̂xi + b̂)

)2

N
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Figure 10.3: Posterior distribution
for the intercept for the linear
model on the shoe size data subset.
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y=0.422x−19.256

Figure 10.4: Best linear fit for the
shoe size data subset.
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One can intuitively think of getting the best fit as adjusting the slopes
and intercepts, calculating the MSE for each, and stopping when you
reach a minimum value. An example of this is shown in Figure 10.5.
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Figure 10.5: Minimizing the Mean
Squared Error (MSE) results in the
best linear fit for the shoe size data
subset.

An Educational Example

The following example is from a data set on school expenditures and
SAT scores.2 We plot the total SAT scores as a function of expendi- 2

tures, perform a linear model fit, and present the best values and
their uncertainties in Figure 10.6. The model is

total = intercept + slope · expenditure

What is immediately odd is that this result seems to suggest the
following:

1 The larger the expenditure per pupil the lower the SAT scores.

2 For each thousand dollars spent per pupil, the total SAT score goes
down 20 points.

3 If you spent zero dollars per pupil, you’d reach a maximum of
SAT score of 1089.
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Figure 10.6: Total SAT score vs
expenditure (top) and the distribu-
tions for the slope (bottom left) and
intercept (bottom right).
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This seems counter intuitive to say the least. What is going on
here? What is happening is that there are other variables that are This is perhaps the most important

lesson of regression. When you see
an effect, make sure to think of any
variables that might also be affected
that may give rise to the illusion
of an effect. It is critical that one
get in this habit, or you will be at
the whim of every unscrupulous
statistician.

related to the expenditure which then lead to lower SAT scores on
average. Such a confounding variable needs to be taken into account in
what is called controlling for a variable.

For example, if we look at the relationship between expenditure
per pupil and the percent of students taking the SAT we see a pat-
tern, shown in Figure 10.7. The more that is spent per pupil, the
more students - both bad and good - take the SAT. Thus, even if ex-
penditure helps students, the fact that the percentage of students
taking the exam increases creates the illusion of the opposite. The
next section states how you can overcome this problem.

10.2 Multiple regression

In order to control for a variable that may be affecting our result,
we simply expand our linear model, including slopes (also called
coefficients) for each of the different variables. Once we do this, visu-
alization becomes challenging because we move into three or more
dimensions. Instead of m for the slope, the multiple slopes are typ-
ically labeled with the greek letter β and numbered, such as β1, β2,
etc... The intercept is then labeled β0. The model structure, however,
is the same, and can be written

y = β0 + β1x1 + β2x2 · · ·

where the different x1, x2, etc... denote different variables. For the
example of the SAT scores, we might have

total = β0 + β1 · expenditure + β2 · percent_taking

where percent_taking is a variable representing the percent of stu-
dents taking the exam. Including this variable gives the posterior
distributions shown in Figure 10.8. Notice that the effect of expendi-
ture is both statistically significant and positive. We can interpret the
values in the following way.

• For each $1000 more spent per pupil the total SAT score increases
on average by 12.29.

• For each percent increase in students taking the SAT, the total SAT
score decreases on average by 2.29.

Have we controlled for all of the effects? Perhaps not! This is
where the ingenuity and expertise of the person analyzing the prob-
lem comes into play.
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Figure 10.7: Percent of students
taking the SAT vs per pupil expen-
diture (top) and the distributions
for the slope (bottom left) and
intercept (bottom right).
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Figure 10.8: The posterior dis-
tributions for coefficients on the
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taking term, and the intercept.
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10.3 Polynomial Regression

A subset multiple regression is polynomial regression, where the vari-
able you are predicting depends on the (usually single) dependent
variable with a larger exponent than linear, e.g. quadratic, cubic, etc...

10.4 Computer Examples

from s i e import *

data=load_data ( ’ data/shoes ize . x l s ’ )

data . head ( )

Index Gender Size Height

0 1 F 5.5 60

1 2 F 6.0 60

2 3 F 7.0 60

3 4 F 8.0 60

4 5 F 8.0 60

import random

random . seed ( 1 0 2 )
rows = random . sample ( data . index , 10 )
newdata=data . i x [ rows ]
data=newdata
data

Index Gender Size Height

60 61 F 7.0 64

251 252 M 9.0 70

69 70 F 8.0 64

290 291 M 11.0 71

247 248 M 12.0 69

156 157 F 9.5 68

231 232 M 10.0 69

17 18 F 6.5 61

216 217 M 10.0 68

252 253 M 9.0 70

p l o t ( data [ ’ Height ’ ] , data [ ’ S ize ’ ] , ’ o ’ )
gca ( ) . se t_x l im ( [ 6 0 , 7 2 ] )
gca ( ) . se t_yl im ( [ 4 , 1 4 ] )
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x l a b e l ( ’ Height [ inches ] ’ )
y l a b e l ( ’ Shoe S ize ’ )

<matplotlib.text.Text at 0x10adae0d0>

r e s u l t = r e g r e s s i o n ( ’ S ize ~ Height ’ , data )

<matplotlib.figure.Figure at 0x10d200710>

<matplotlib.figure.Figure at 0x10d702610>
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p l o t ( data [ ’ Height ’ ] , data [ ’ S ize ’ ] , ’ o ’ )

h= l i n s p a c e ( 6 0 , 7 2 , 1 0 )
p l o t ( h , r e s u l t [ ’ _ P r e d i c t ’ ] ( Height=h ) , ’− ’ )

gca ( ) . se t_x l im ( [ 6 0 , 7 2 ] )
gca ( ) . se t_yl im ( [ 4 , 1 4 ] )
x l a b e l ( ’ Height [ inches ] ’ )
y l a b e l ( ’ Shoe S ize ’ )

b= r e s u l t . I n t e r c e p t . mean ( )
m= r e s u l t . Height . mean ( )

i f b >0 :
t e x t ( 6 2 , 1 2 , ’ $y=%.3 f x + %.3 f$ ’ % (m, b ) , f o n t s i z e =30)

e l s e :
t e x t ( 6 2 , 1 2 , ’ $y=%.3 f x %.3 f$ ’ % (m, b ) , f o n t s i z e =30)



multi-parameter models 205

data=load_data ( ’ data/ s a t . csv ’ )

r e s u l t = r e g r e s s i o n ( ’ t o t a l ~ expenditure ’ , data )

<matplotlib.figure.Figure at 0x1109156d0>

<matplotlib.figure.Figure at 0x110953110>
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p l o t ( data [ ’ expenditure ’ ] , data [ ’ t o t a l ’ ] , ’ o ’ )
x l a b e l ( ’ Expenditure [ per pupil , thousands ] ’ )
y l a b e l ( ’SAT Tota l ’ )
h= l i n s p a c e ( 3 , 1 0 , 1 0 )
p l o t ( h , r e s u l t [ ’ _ P r e d i c t ’ ] ( expenditure=h ) , ’− ’ )

b= r e s u l t . I n t e r c e p t . mean ( )
m= r e s u l t . expenditure . mean ( )

i f b >0 :
t e x t ( 4 . 5 , 1 1 2 5 , ’ $y=%.3 f x + %.3 f$ ’ % (m, b ) , f o n t s i z e =30)

e l s e :
t e x t ( 4 . 5 , 1 1 2 5 , ’ $y=%.3 f x %.3 f$ ’ % (m, b ) , f o n t s i z e =30)
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r e s u l t = r e g r e s s i o n ( ’ percent_tak ing ~ expenditure ’ , data )

<matplotlib.figure.Figure at 0x111cfff10>

<matplotlib.figure.Figure at 0x111867750>



208 statistical inference for everyone

p l o t ( data [ ’ expenditure ’ ] , data [ ’ percent_ tak ing ’ ] , ’ o ’ )
x l a b e l ( ’ Expenditure [ per pupil , thousands ] ’ )
y l a b e l ( ’SAT Tota l ’ )
h= l i n s p a c e ( 3 , 1 0 , 1 0 )
p l o t ( h , r e s u l t [ ’ _ P r e d i c t ’ ] ( expenditure=h ) , ’− ’ )

b= r e s u l t . I n t e r c e p t . mean ( )
m= r e s u l t . expenditure . mean ( )

i f b >0 :
t e x t ( 4 . 5 , 8 5 , ’ $y=%.3 f x + %.3 f$ ’ % (m, b ) , f o n t s i z e =30)

e l s e :
t e x t ( 4 . 5 , 8 5 , ’ $y=%.3 f x %.3 f$ ’ % (m, b ) , f o n t s i z e =30)
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r e s u l t = r e g r e s s i o n ( ’ t o t a l ~ expenditure + percent_ tak ing ’ , data )

<matplotlib.figure.Figure at 0x1107f5fd0>

<matplotlib.figure.Figure at 0x10d70a690>
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<matplotlib.figure.Figure at 0x110fbcf90>



11 Introduction to MCMC

Once the problems get to a sufficient complexity, the analytical tools
and approximations we have employed in previous chapters will no
longer work well. In those cases, we turn to simulation techniques,
one of which is Markov Chain Monte Carlo (MCMC). It is well be-
yond this book to talk about the details of this process, but the basic
process is the following.

We start with a model of the system, such as the bent coin model
in Section 6.3. In that system, we try to estimate the probability that a
particular doing will flip heads, quantified by the parameter θ which
can take on values from θ = 0 (i.e. a coin which only flips tails)
through θ = 0.5 (i.e. a “fair” coin which flips tails and heads equally)
up to θ = 1 (i.e. a coin which only flips heads). Our data consists of
a total number of flips, N, and how many are heads, h. Although this
problem can be done analytically, it is instructive to walk through
the solved problem with the new method before looking at more
complex models.

MCMC proceeds, roughly, with the following steps

1 Many random “walkers” are constructed, each with a random
value of the parameters (e.g. θ in this case).

2 The random values are chosen from the prior probability of the
parameters. (e.g. uniform in this case, P(θ) = 1)

3 The “walkers” move around randomly, guided by the likelihood
function (e.g. the Binomial or Bernoulli distribution, in this case)

4 Over hundreds or thousands of steps, the distribution of the val-
ues being explored by the “walkers” matches the posterior distri-
bution, so one can look at histograms of the resulting “walkers” to
get estimates of the parameters, and their uncertainty

11.1 One-Dimensional Models

The model we first look at is the coin flip model: given 17 heads
in 25 flips, what is the probability distribution of the the measure
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of the coin’s bent-ness, θ. We know the solution is of the form of a
beta distribution, but we perform the same analysis with the MCMC
technique.

h,N=data=17,25

def P_data(data,theta):

h,N=data

distribution=Bernoulli(h,N)

return distribution(theta)

model=MCMCModel(data,P_data,

theta=Uniform(0,1))

Figure 11.1: So-called MCMC
“chains” for parameter θ versus
time. Observe that the values of θ
start spread evenly from 0 to 1 at
the beginning and then thin down
to a range of about 0.5-0.8 with the
middle around 0.7 (17/25 = 0.68).

model.run_mcmc(500)

model.plot_chains()

Reading the Output

We can now plot the distributions of the parameters, just θ in this
case, yielding best-fits, uncertainties, etc...

model.plot_distributions()

(see Figure 11.2)
We can further perform some simple calculations on the probabili-

ties for the parameters, such as

model.P(’theta>0.5’)

0.96173333333333333
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Figure 11.2: Distribution of θ, and
the 95% credible interval.

model.P(’(0.2<theta) & (theta<.5)’)

0.038266666666666664

11.2 Multi-Dimensional Models

It is straightforward then to include more than one parameter and to
do regression using this technique. For example, here is an example
with some artificial data,

def linear(x,a,b):

return a*x+b

model=MCMCModel_Regression(x,y,linear,

a=Uniform(-10,10),

b=Uniform(0,100),

)

Figure 11.3: Chains for parameters
a, b, and the noise σ.

model.run_mcmc(500)

model.plot_chains()
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plot(x,y,’o’)

model.plot_predictions(xfit,color=’g’)

Figure 11.4: Data (blue) and pre-
dictions (green) for the model - the
width of the predictions demon-
strates the uncertainty.

model.plot_distributions()

And we can look at best estimates, quartiles, and probability com-
parisons,

model.percentiles([5,50,95])

{’_sigma’: array([ 0.97143798, 1.00744104, 1.0467333 ]),

’a’: array([ 0.07063144, 0.24939562, 0.42523751]),

’b’: array([ 39.88446461, 39.98633744, 40.09010139])}
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Figure 11.5: Distributions for
parameters a and b (slope and
intercept).

model.P(’a>0’)

0.98936000000000002

11.3 Hierarchical Model Example - Kruschke BEST Test

A comparison between means is a standard statistical technique.
However, using a hierarchical model can be superior to the typical
tests.1 1

In this example, we use the Kruschke BEST Test to compare the
difference between a treatment and control - we want to obtain the
best estimate of the difference between the means of variables. With
the MCMC technique, we can achieve it with the following,

from sie import *
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drug = (101,100,102,104,102,97,105,105,98,

101,100,123,105,103,100,95,102,106,

109,102,82,102,100,102,102,101,102,

102,103,103,97,97,103,101,97,104,

96,103,124,101,101,100,101,101,104,

100,101)

placebo = (99,101,100,101,102,100,97,101,

104,101,102,102,100,105,88,101,100,

104,100,100,100,101,102,103,97,101,

101,100,101,99,101,100,100,

101,100,99,101,100,102,99,100,99)

model=mcmc.BESTModel(drug,placebo)

model.run_mcmc()

Running MCMC...

Done.

5.80 s

model.names

[’mu1’, ’mu2’, ’sigma1’, ’sigma2’, ’nu’]

model.plot_chains(’mu1’)

model.plot_distribution(’mu1’)
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Figure 11.6: Chains for parameter
mu1, the mean of the drug group.

Figure 11.7: Distribution for pa-
rameter mu1, the mean of the drug

group.
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model.plot_distribution(’mu2’)

Figure 11.8: png

model.plot_distribution(r’$\delta$=mu1-mu2’)

Figure 11.9: Distribution for pa-
rameter δ, the mean of the difference
between the drug group and the
placebo group.

We can clearly see from the distribution of δ, as well as the cred-
ible ranges, that there is significant evidence for a non-zero effect.
We would want to extend this to include the effect size, and explore
the prior probability of the the drug working, in order to reasonably
assess whether this is an effect worth pursuing.



12 Concluding Thoughts

12.1 Where have we come?

We have tried in this book to present a particular picture of the
world: everything is probability. We started with basic definitions
and applications, and followed the consequences of the rules of prob-
ability to examine more complex problems. It is our hope that the
reader sees that all of the analysis stems from a single perspective. In
this way, one can approach any problem of inference in a unified way,
applying the recipe we’ve used throughout:

1 Propose a model for the data you observe (which could be as
simple as “there is an unknown true value for the observations”)

2 Specify your prior knowledge of the parameters in the model, in
the form of a prior probability (which is often as simple as “I don’t
know anything about the parameters, so all possible values are
equally likely”)

3 Specify how likely your data would be if your model were true,
which is the likelihood part of Bayes’ rule

4 Apply the rules of probability, namely Bayes’ rule, to determine
the posterior probability for the parameters in the model

5 Use the properties of probability functions to calculate answers
to specific questions, for example “is it likely that this number is
greater than zero?” or “are these two measurements different?”

Although I haven’t covered all possible examples, and there are
additions and clarifications still planned, this approach can be used
for all new problems one faces. The only steps that can be daunting,
at times, is the mathematical consequences and even there we have
seen that the judicious use of approximations can go a long way.
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12.2 Where are we going?

Topics I’d love to add, and will when I have the chance, include (in
no particular order),

• Measurement in Science

• Linear Regression and Correlation

• Two-sample inferences

• Classification

• Model Building in Science

• Analysis of Social Science Data

• Inference for Deviation Parameters

• Experimental Design

• Computer simulations (e.g. MCMC)
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Appendix A
Computational Analysis

The book is written with an accompanying software package, writ-
ten in Python. As of this writing the recommended distribution for
installing python is the Anaconda distribution, available here:

https://store.continuum.io/cshop/anaconda/

It is

• Free

• Easy to Use

• Easy to Extend

• Very Powerful

The accompanying software for the book can be obtained from the
book website, http://web.bryant.edu/∼bblais/statistical-inference-
for-everyone-sie.html

https://store.continuum.io/cshop/anaconda/
http://web.bryant.edu/~bblais/statistical-inference-for-everyone-sie.html
http://web.bryant.edu/~bblais/statistical-inference-for-everyone-sie.html




Appendix B
Notation and Standards

B.1 Useful Greek Letters

α Alpha slope of a line
β Beta slope of a line, intercept
γ Gamma
Γ Gamma
δ Delta A small change in a variable
∆ Delta A change in a variable
ε Epsilon
ζ Zeta
η Eta
θ Theta The parameters in a binomial/-

beta distribution
Θ Theta
κ Kappa
λ Lambda the mean in a poisson distribu-

tion
Λ Lambda
µ Mu the mean in a normal distribu-

tion (pronounced “mew”)
ν Nu (pronounced “new”)
ξ Xi
Ξ Xi

π Pi Represents the constant
3.1415· · ·, the ratio of the cir-
cumference to the diameter of a
circle

Π Pi A product of a series of num-
bers

ρ Rho
σ Sigma The standard width parameter

of the normal distribution
Σ Sigma A sum of a series of numbers
τ Tau
φ Phi
Φ Phi
χ Chi A distribution related to the

sum of normally distributed
variables

ψ Psi
Ψ Psi
ω Omega
Ω Omega

B.2 Some Math Notation

Variables

A set of values, labeled with subscripts...

x1 = 1

x2 = 5
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x3 = −3

x4 = 2

x5 = 8

referred collectively as xi.

Sums

x1 + x2 + x3 + x4 + x5 = 1 + 5 + (−3) + 2 + 8 = 13

is equivalent to

5

∑
i=1

xi = 1 + 5 + (−3) + 2 + 8 = 13

Products

x1 · x2 · x3 · x4 · x5 = 1 · 5 · (−3) · 2 · 8 = −240

is equivalent to

5

∏
i=1

xi = 1 · 5 · (−3) · 2 · 8 = −240

Sample Mean

The sample mean of a set of numbers is defined as...

x̄ ≡ x1 + x2 + · · · xN
N

In the example above

x̄ ≡ x1 + x2 + x3 + x4 + x5

5
= 2

3
5

It can also be written

x̄ ≡ ∑N
i=1 xi

N

or

x̄ ≡ ∑i xi
N
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Sample Standard Deviation

s2 ≡ 1
N − 1

N

∑
i=1

(x− x̄)2

Although the justification for the
N − 1 part is beyond this book,
one easy way to remember it is
that the sample distribution of a
set of numbers is an estimate for
the σ parameter of the normal
distribution, representing the spread
of the data. You can think of the
N − 1 part as a check to keep you
from doing the crazy thing of
estimating a spread with only 1

data point!

s ≡

√√√√ 1
N − 1

N

∑
i=1

(x− x̄)2

Estimates

Any specific estimate of a parameter, such as θ, is denoted with a hat,
such as θ̂.

Factorials

Factorials are defined as

N! = 1 · 2 · 3 · · · (N − 1) · N
for example

5! = 1 · 2 · 3 · 4 · 5 = 120

The N-choose-k notation is a shorthand for the factorials that arise
in binomial and Beta distributions.

(
N
k

)
≡ N!

k!(N − k)!

B.3 Qualitative labels to probability values

Rough guide for the conversion of qualitative labels to probability
values used throughout the book.

term probability
virtually impossible 1/1,000,000

extremely unlikely 0.01 (i.e. 1/100)
very unlikely 0.05 (i.e. 1/20)

unlikely 0.2 (i.e. 1/5)
slightly unlikely 0.4 (i.e. 2/5)

even odds 0.5 (i.e. 50-50)
slightly likely 0.6 (i.e. 3/5)

likely 0.8 (i.e. 4/5)
very likely 0.95 (i.e. 19/20)

extremely likely 0.99 (i.e. 99/100)
virtually certain 999,999/1,000,000





Appendix C
Common Distributions and Their Properties

This chapter is a reference for the standard distributions encountered
in statistical inference. Although you are encouraged to read this
chapter through, it can also be read out-of-order to look at a specific
distribution.

C.1 Discrete and Continuous

Some distributions apply to a discrete (i.e. countable) number of
possibilities while others apply to continuous values. In the case
of discrete variables, the probability is given by the actual value of
the distribution, so it makes sense to speak of the probability of an
individual label, P(coin1). In the case of continuous variables, the
probability is given by the area under the distribution, so it makes
sense only to speak of the probability if a range of labels, P(0.2 < θ <

0.3).

C.2 Uniform

Discrete

Discrete uniform distribution The discrete uniform distribution is Discrete uniform distribution The
discrete uniform distribution is
defined to be a constant value for all
possibilities. Mathematically this is
written

p(xi) =
1
N

where N is the total number of
possibilities, labeled x1 to xN .

defined to be a constant value for all possibilities. Mathematically this
is written

p(xi) =
1
N

where N is the total number of possibilities, labeled x1 to xN . The
picture of the distribution is shown in Figure C.1

Continuous

Continuous uniform distribution The continuous uniform distri- Continuous uniform distribution
The continuous uniform distri-
bution is defined to be a constant
between a minimum and maximum
value, and zero everywhere else.
Mathematically this is written

p(x) =
1

max−min
for min < x < max

.

bution is defined to be a constant between a minimum and maximum
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0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
(x

)

5%

0.05

25%

0.25

50%

0.50

75%

0.75

95%

0.95

Min=0, Max=1

Figure C.1: Discrete uniform distri-
bution for values 1 to 6. The value
for each is p(xi) = 1/6.

value, and zero everywhere else. Mathematically this is written

p(x) =
1

max−min
for min < x < max

. The picture of the distribution is shown in Figure C.2.

Example C.1 You call a plumber, and they say that they can come anytime
in the next 4 hours. The probability of them arriving at any particular time
can be represented with a uniform distribution. What is the probability that
they arrive in the first 20 minutes of the second hour?

In order to ask questions about total probability from a continuous
distribution you take the area under the curve between the relevant
values. In this case it’d be the area under the curve from the time t = The reason for the particular con-

stant value for the uniform distri-
bution, 1/(max−min), is simply
that the area of the entire rectan-
gle must be 1, which means that
there is a 100% chance of the values
falling between the minimum and
maximum values.

2hr and t = 2hr + 20minutes = 2.333hr, as shown in Figure C.3. The
area under the curve is just the area of the shaded region between
times t = 2hr and t = 2.333hr, or just the area of a rectangle - A =

base× height. The base of the rectangle is the length of time, or

base = 0.333hr

The height of the rectangle is given by the constant value of the uni-
form distribution, or

height =
1

max−min
=

1
4hr− 0hr

= 0.25
1
hr
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Figure C.2: Continuous uniform
distribution between values 0 and 1
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0.00
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0.20

0.25

0.30

P
(t
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e
)

5%

0.20

25%

1.00

50%

2.00

75%

3.00

95%

3.80

20 minutes

Min=0, Max=4

Figure C.3: Continuous uniform
distribution for the plumber exam-
ple (Example C.1).



232 statistical inference for everyone

So the total probability of the plumber coming in the first 20 minutes
of the second hour is

P(2 < t < 2.25) = (0.333hr)×
(

0.25
1
hr

)
= 0.0833

C.3 Binomial

Binomial distribution The discrete binomial distribution is de- Binomial distribution The discrete
binomial distribution is defined to
be the probability of achieving h
successes in a given N events where
each event has a given θ probability
of success.

P(h|N, θ) =

(
h
N

)
θh(1− θ)N−h

fined to be the probability of achieving h successes in a given N
events where each event has a given θ probability of success.

P(h|N, θ) =

(
h
N

)
θh(1− θ)N−h

0 5 10 15 20 25 30
Number of heads

0.00

0.05

0.10

0.15

0.20

0.25

P
(h
,N

=
30

)

p=0.1

p=0.5

p=0.8

Figure C.4: Probability of getting
h heads in 30 flips given a possible
unfair coin. One coin has p = 0.1,
where the maximum is for 3 heads
(or 1/10 of the 30 flips), but 2

heads is nearly as likely. Another
has p = 0.5, and is the fair coin
considered earlier with a maximum
at 15 heads (or 1/2 of the 30 flips).
Finally, another coin shown as
p = 0.8 where 24 heads (or 8/10 of
the 30 flips) is maximum.

Although it may look like a Beta, the binomial distribution is used
to find the best estimate for the number of successes, h, given the
number of events, N, and the probability of the success of a single
event, θ.

C.4 Beta

Beta distribution The continuous Beta distribution is the posterior Beta distribution The continuous
Beta distribution is the posterior
probability distribution for the pa-
rameter θ, where one has observed
h successes in a given N events, and
each event is assumed to have a θ
probability of success.

P(θ|h, N) = (N + 1) ·
(

N
h

)
θh(1− θ)N−h

probability distribution for the parameter θ, where one has observed
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h successes in a given N events, and each event is assumed to have a
θ probability of success.

P(θ|h, N) = (N + 1) ·
(

N
h

)
θh(1− θ)N−h

Although it may look like a binomial, the Beta distribution is used
to find the best estimate for the parameter θ where the number of
successes and events, h and N are given.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ

0

1

2

3

4

P
(θ

)

1%

0.07

5%

0.11

25%

0.20

50%

0.28

75%

0.36

95%

0.49

99%

0.59

3 heads and 9 tails

Figure C.5: Posterior probability
distribution for the θ values of
the bent coin - the probability
that the coin will land heads. The
distribution is shown for data 3

heads and 9 tails. The various
quartiles are shown in the plot.

C.5 Normal (Gaussian)

Normal distribution The Normal distribution is the most com- Normal distribution The Normal
distribution is the most common
distribution found in all of statis-
tical inference. It is the best prior
distribution to use, when all you
know is that your data has a con-
stant true value and some constant
variation around that true value. It
is the posterior probability distri-
bution for the unknown true value
given N samples and the known de-
viation, σ. It is also the approximate
form for nearly every distribution
when you have many samples. The
mathematical form for the normal,
or Gaussian, is

Normal(µ, σ) =
1√

2πσ2
e−(x−µ)2/2σ2

mon distribution found in all of statistical inference. It is the best
prior distribution to use, when all you know is that your data has
a constant true value and some constant variation around that true
value. It is the posterior probability distribution for the unknown
true value given N samples and the known deviation, σ. It is also the
approximate form for nearly every distribution when you have many
samples. The mathematical form for the normal, or Gaussian, is

Normal(µ, σ) =
1√

2πσ2
e−(x−µ)2/2σ2
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Figure C.6: The normal distribution.

Three useful properties of σ for the normal distribution are the
following:

1 the normal distribution value at the maximum (i.e. at x = µ)
is around 2.7 times larger than the value one-σ away from the
maximum (at x = µ− σ and x = µ + σ)

2 the total probability between these two points is 65%.

3 95% of the distribution lies between µ − 2σ and µ + 2σ (see Fig-
ure 7.3)
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Tables

D.1 Credible Intervals for Standard Normal Distribution

4 3 2 1 0 1 2 3 4
z

0.0

0.1

0.2

0.3

0.4

P
(z

)

68% CI at µ±1σ

Credible Interval ±z Approximately
50.0% 0.6745σ

68.0% 0.9945σ 1σ

90.0% 1.6449σ

95.0% 1.9600σ 2σ

99.0% 2.5758σ

99.8% 3.0902σ 3σ

99.995% 4.0556σ 4σ

Example D.1 Usage of the Credible Interval Table for the Normal Distri-
bution

Given a set of 10 samples with sample mean x̄ = 5.2 and known
deviation σ = 0.3, the best estimate for the mean parameter µ, repre-
senting the true value of the data, is the sample mean, µ̂ = 5.2 with
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uncertainty σ/
√

N or 0.3/
√

10 = 0.095. Some of the credible intervals
for this estimate then are the following

• 68% - [5.2− 0.9945 · 0.095, 5.2 + 0.9945 · 0.095] = [5.11, 5.29]

• 95% - [5.2− 1.9600 · 0.095, 5.2 + 1.9600 · 0.095] = [5.01, 5.39]

• 99.8% - [5.2− 3.0902 · 0.095, 5.2 + 3.0902 · 0.095] = [4.91, 5.49]

or approximately

• 68% - [5.2− 1 · 0.095, 5.2 + 1 · 0.095] = [5.11, 5.29]

• 95% - [5.2− 2 · 0.095, 5.2 + 2 · 0.095] = [5.01, 5.39]

• 99.8% - [5.2− 3 · 0.095, 5.2 + 3 · 0.095] = [4.91, 5.49]

D.2 Credible Intervals for Student’s t Distribution

Degrees of Freedom
Credible
Interval

1 2 3 4 5 6 7 8

50.0% 1.000σ 0.816σ 0.765σ 0.741σ 0.727σ 0.718σ 0.711σ 0.706σ

68.0% 1.819σ 1.312σ 1.189σ 1.134σ 1.104σ 1.084σ 1.070σ 1.060σ

90.0% 6.314σ 2.920σ 2.353σ 2.132σ 2.015σ 1.943σ 1.895σ 1.860σ

95.0% 12.706σ 4.303σ 3.182σ 2.776σ 2.571σ 2.447σ 2.365σ 2.306σ

99.0% 63.657σ 9.925σ 5.841σ 4.604σ 4.032σ 3.707σ 3.499σ 3.355σ

99.8% 318.309σ 22.327σ 10.215σ 7.173σ 5.893σ 5.208σ 4.785σ 4.501σ

99.995% 12732.395σ 141.416σ 35.298σ 18.522σ 12.893σ 10.261σ 8.783σ 7.851σ

Degrees of Freedom
Credible
Interval

9 10 11 12 13 14 15 16

50.0% 0.703σ 0.700σ 0.697σ 0.695σ 0.694σ 0.692σ 0.691σ 0.690σ

68.0% 1.053σ 1.046σ 1.041σ 1.037σ 1.034σ 1.031σ 1.029σ 1.026σ

90.0% 1.833σ 1.812σ 1.796σ 1.782σ 1.771σ 1.761σ 1.753σ 1.746σ

95.0% 2.262σ 2.228σ 2.201σ 2.179σ 2.160σ 2.145σ 2.131σ 2.120σ

99.0% 3.250σ 3.169σ 3.106σ 3.055σ 3.012σ 2.977σ 2.947σ 2.921σ

99.8% 4.297σ 4.144σ 4.025σ 3.930σ 3.852σ 3.787σ 3.733σ 3.686σ

99.995% 7.215σ 6.757σ 6.412σ 6.143σ 5.928σ 5.753σ 5.607σ 5.484σ
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Degrees of Freedom
Credible
Interval

17 18 19 20 21 22 23 24

50.0% 0.689σ 0.688σ 0.688σ 0.687σ 0.686σ 0.686σ 0.685σ 0.685σ

68.0% 1.024σ 1.023σ 1.021σ 1.020σ 1.019σ 1.017σ 1.016σ 1.015σ

90.0% 1.740σ 1.734σ 1.729σ 1.725σ 1.721σ 1.717σ 1.714σ 1.711σ

95.0% 2.110σ 2.101σ 2.093σ 2.086σ 2.080σ 2.074σ 2.069σ 2.064σ

99.0% 2.898σ 2.878σ 2.861σ 2.845σ 2.831σ 2.819σ 2.807σ 2.797σ

99.8% 3.646σ 3.610σ 3.579σ 3.552σ 3.527σ 3.505σ 3.485σ 3.467σ

99.995% 5.379σ 5.288σ 5.209σ 5.139σ 5.077σ 5.022σ 4.972σ 4.927σ

Degrees of Freedom
Credible
Interval

25 26 27 28 29 30 31 32

50.0% 0.684σ 0.684σ 0.684σ 0.683σ 0.683σ 0.683σ 0.682σ 0.682σ

68.0% 1.015σ 1.014σ 1.013σ 1.012σ 1.012σ 1.011σ 1.011σ 1.010σ

90.0% 1.708σ 1.706σ 1.703σ 1.701σ 1.699σ 1.697σ 1.696σ 1.694σ

95.0% 2.060σ 2.056σ 2.052σ 2.048σ 2.045σ 2.042σ 2.040σ 2.037σ

99.0% 2.787σ 2.779σ 2.771σ 2.763σ 2.756σ 2.750σ 2.744σ 2.738σ

99.8% 3.450σ 3.435σ 3.421σ 3.408σ 3.396σ 3.385σ 3.375σ 3.365σ

99.995% 4.887σ 4.849σ 4.816σ 4.784σ 4.756σ 4.729σ 4.705σ 4.682σ

Degrees of Freedom
Credible
Interval

33 34 35 36 37 38 39 40

50.0% 0.682σ 0.682σ 0.682σ 0.681σ 0.681σ 0.681σ 0.681σ 0.681σ

68.0% 1.010σ 1.009σ 1.009σ 1.008σ 1.008σ 1.008σ 1.007σ 1.007σ

90.0% 1.692σ 1.691σ 1.690σ 1.688σ 1.687σ 1.686σ 1.685σ 1.684σ

95.0% 2.035σ 2.032σ 2.030σ 2.028σ 2.026σ 2.024σ 2.023σ 2.021σ

99.0% 2.733σ 2.728σ 2.724σ 2.719σ 2.715σ 2.712σ 2.708σ 2.704σ

99.8% 3.356σ 3.348σ 3.340σ 3.333σ 3.326σ 3.319σ 3.313σ 3.307σ

99.995% 4.660σ 4.640σ 4.622σ 4.604σ 4.588σ 4.572σ 4.558σ 4.544σ

Example D.2 Usage of the Credible Interval Table for the Student’s t
Distribution

Given a set of 10 samples (9 degrees of freedom) with sample
mean x̄ = 5.2 and sample deviation s = 0.3, the best estimate for
the mean parameter µ, representing the true value of the data, is the
sample mean, µ̂ = 5.2 with uncertainty s/

√
N or 0.3/

√
10 = 0.095.

Some of the credible intervals for this estimate then are the following

• 68% - [5.2− 1.053 · 0.095, 5.2 + 1.053 · 0.095] = [5.09, 5.3]

• 95% - [5.2− 2.262 · 0.095, 5.2 + 2.262 · 0.095] = [4.99, 5.41]

• 99.8% - [5.2− 4.297 · 0.095, 5.2 + 4.297 · 0.095] = [4.79, 5.61]
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D.3 Cumulative Standard Normal Distribution

4 3 2 1 0 1 2 3 4
z

0.0

0.1

0.2

0.3

0.4

P
(z

)

area

z Area
on Left

-3.70 0.0001

-3.69 0.0001

-3.68 0.0001

-3.67 0.0001

-3.66 0.0001

-3.65 0.0001

-3.64 0.0001

-3.63 0.0001

-3.62 0.0001

-3.61 0.0002

-3.60 0.0002

-3.59 0.0002

-3.58 0.0002

-3.57 0.0002

-3.56 0.0002

-3.55 0.0002

-3.54 0.0002

-3.53 0.0002

-3.52 0.0002

-3.51 0.0002

-3.50 0.0002

-3.49 0.0002

-3.48 0.0003

-3.47 0.0003

-3.46 0.0003

-3.45 0.0003

-3.44 0.0003

-3.43 0.0003

-3.42 0.0003

-3.41 0.0003

-3.40 0.0003

z Area
on Left

-3.40 0.0003

-3.39 0.0003

-3.38 0.0004

-3.37 0.0004

-3.36 0.0004

-3.35 0.0004

-3.34 0.0004

-3.33 0.0004

-3.32 0.0005

-3.31 0.0005

-3.30 0.0005

-3.29 0.0005

-3.28 0.0005

-3.27 0.0005

-3.26 0.0006

-3.25 0.0006

-3.24 0.0006

-3.23 0.0006

-3.22 0.0006

-3.21 0.0007

-3.20 0.0007

-3.19 0.0007

-3.18 0.0007

-3.17 0.0008

-3.16 0.0008

-3.15 0.0008

-3.14 0.0008

-3.13 0.0009

-3.12 0.0009

-3.11 0.0009

-3.10 0.0010

z Area
on Left

-3.10 0.0010

-3.09 0.0010

-3.08 0.0010

-3.07 0.0011

-3.06 0.0011

-3.05 0.0011

-3.04 0.0012

-3.03 0.0012

-3.02 0.0013

-3.01 0.0013

-3.00 0.0013

-2.99 0.0014

-2.98 0.0014

-2.97 0.0015

-2.96 0.0015

-2.95 0.0016

-2.94 0.0016

-2.93 0.0017

-2.92 0.0018

-2.91 0.0018

-2.90 0.0019

-2.89 0.0019

-2.88 0.0020

-2.87 0.0021

-2.86 0.0021

-2.85 0.0022

-2.84 0.0023

-2.83 0.0023

-2.82 0.0024

-2.81 0.0025

-2.80 0.0026

z Area
on Left

-2.80 0.0026

-2.79 0.0026

-2.78 0.0027

-2.77 0.0028

-2.76 0.0029

-2.75 0.0030

-2.74 0.0031

-2.73 0.0032

-2.72 0.0033

-2.71 0.0034

-2.70 0.0035

-2.69 0.0036

-2.68 0.0037

-2.67 0.0038

-2.66 0.0039

-2.65 0.0040

-2.64 0.0041

-2.63 0.0043

-2.62 0.0044

-2.61 0.0045

-2.60 0.0047

-2.59 0.0048

-2.58 0.0049

-2.57 0.0051

-2.56 0.0052

-2.55 0.0054

-2.54 0.0055

-2.53 0.0057

-2.52 0.0059

-2.51 0.0060

-2.50 0.0062

z Area
on Left

-2.50 0.0062

-2.49 0.0064

-2.48 0.0066

-2.47 0.0068

-2.46 0.0069

-2.45 0.0071

-2.44 0.0073

-2.43 0.0075

-2.42 0.0078

-2.41 0.0080

-2.40 0.0082

-2.39 0.0084

-2.38 0.0087

-2.37 0.0089

-2.36 0.0091

-2.35 0.0094

-2.34 0.0096

-2.33 0.0099

-2.32 0.0102

-2.31 0.0104

-2.30 0.0107

-2.29 0.0110

-2.28 0.0113

-2.27 0.0116

-2.26 0.0119

-2.25 0.0122

-2.24 0.0125

-2.23 0.0129

-2.22 0.0132

-2.21 0.0136

-2.20 0.0139
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Cumulative Normal Distribution (cont.)

4 3 2 1 0 1 2 3 4
z

0.0

0.1

0.2

0.3

0.4

P
(z

)

area

z Area
on Left

-2.20 0.0139

-2.19 0.0143

-2.18 0.0146

-2.17 0.0150

-2.16 0.0154

-2.15 0.0158

-2.14 0.0162

-2.13 0.0166

-2.12 0.0170

-2.11 0.0174

-2.10 0.0179

-2.09 0.0183

-2.08 0.0188

-2.07 0.0192

-2.06 0.0197

-2.05 0.0202

-2.04 0.0207

-2.03 0.0212

-2.02 0.0217

-2.01 0.0222

-2.00 0.0228

-1.99 0.0233

-1.98 0.0239

-1.97 0.0244

-1.96 0.0250

-1.95 0.0256

-1.94 0.0262

-1.93 0.0268

-1.92 0.0274

-1.91 0.0281

-1.90 0.0287

z Area
on Left

-1.90 0.0287

-1.89 0.0294

-1.88 0.0301

-1.87 0.0307

-1.86 0.0314

-1.85 0.0322

-1.84 0.0329

-1.83 0.0336

-1.82 0.0344

-1.81 0.0351

-1.80 0.0359

-1.79 0.0367

-1.78 0.0375

-1.77 0.0384

-1.76 0.0392

-1.75 0.0401

-1.74 0.0409

-1.73 0.0418

-1.72 0.0427

-1.71 0.0436

-1.70 0.0446

-1.69 0.0455

-1.68 0.0465

-1.67 0.0475

-1.66 0.0485

-1.65 0.0495

-1.64 0.0505

-1.63 0.0516

-1.62 0.0526

-1.61 0.0537

-1.60 0.0548

z Area
on Left

-1.60 0.0548

-1.59 0.0559

-1.58 0.0571

-1.57 0.0582

-1.56 0.0594

-1.55 0.0606

-1.54 0.0618

-1.53 0.0630

-1.52 0.0643

-1.51 0.0655

-1.50 0.0668

-1.49 0.0681

-1.48 0.0694

-1.47 0.0708

-1.46 0.0721

-1.45 0.0735

-1.44 0.0749

-1.43 0.0764

-1.42 0.0778

-1.41 0.0793

-1.40 0.0808

-1.39 0.0823

-1.38 0.0838

-1.37 0.0853

-1.36 0.0869

-1.35 0.0885

-1.34 0.0901

-1.33 0.0918

-1.32 0.0934

-1.31 0.0951

-1.30 0.0968

z Area
on Left

-1.30 0.0968

-1.29 0.0985

-1.28 0.1003

-1.27 0.1020

-1.26 0.1038

-1.25 0.1056

-1.24 0.1075

-1.23 0.1093

-1.22 0.1112

-1.21 0.1131

-1.20 0.1151

-1.19 0.1170

-1.18 0.1190

-1.17 0.1210

-1.16 0.1230

-1.15 0.1251

-1.14 0.1271

-1.13 0.1292

-1.12 0.1314

-1.11 0.1335

-1.10 0.1357

-1.09 0.1379

-1.08 0.1401

-1.07 0.1423

-1.06 0.1446

-1.05 0.1469

-1.04 0.1492

-1.03 0.1515

-1.02 0.1539

-1.01 0.1562

-1.00 0.1587

z Area
on Left

-1.00 0.1587

-0.99 0.1611

-0.98 0.1635

-0.97 0.1660

-0.96 0.1685

-0.95 0.1711

-0.94 0.1736

-0.93 0.1762

-0.92 0.1788

-0.91 0.1814

-0.90 0.1841

-0.89 0.1867

-0.88 0.1894

-0.87 0.1922

-0.86 0.1949

-0.85 0.1977

-0.84 0.2005

-0.83 0.2033

-0.82 0.2061

-0.81 0.2090

-0.80 0.2119

-0.79 0.2148

-0.78 0.2177

-0.77 0.2206

-0.76 0.2236

-0.75 0.2266

-0.74 0.2296

-0.73 0.2327

-0.72 0.2358

-0.71 0.2389

-0.70 0.2420
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Cumulative Normal Distribution (cont.)

4 3 2 1 0 1 2 3 4
z

0.0

0.1

0.2

0.3

0.4

P
(z

)

area

z Area
on Left

-0.70 0.2420

-0.69 0.2451

-0.68 0.2483

-0.67 0.2514

-0.66 0.2546

-0.65 0.2578

-0.64 0.2611

-0.63 0.2643

-0.62 0.2676

-0.61 0.2709

-0.60 0.2743

-0.59 0.2776

-0.58 0.2810

-0.57 0.2843

-0.56 0.2877

-0.55 0.2912

-0.54 0.2946

-0.53 0.2981

-0.52 0.3015

-0.51 0.3050

-0.50 0.3085

-0.49 0.3121

-0.48 0.3156

-0.47 0.3192

-0.46 0.3228

-0.45 0.3264

-0.44 0.3300

-0.43 0.3336

-0.42 0.3372

-0.41 0.3409

-0.40 0.3446

z Area
on Left

-0.40 0.3446

-0.39 0.3483

-0.38 0.3520

-0.37 0.3557

-0.36 0.3594

-0.35 0.3632

-0.34 0.3669

-0.33 0.3707

-0.32 0.3745

-0.31 0.3783

-0.30 0.3821

-0.29 0.3859

-0.28 0.3897

-0.27 0.3936

-0.26 0.3974

-0.25 0.4013

-0.24 0.4052

-0.23 0.4090

-0.22 0.4129

-0.21 0.4168

-0.20 0.4207

-0.19 0.4247

-0.18 0.4286

-0.17 0.4325

-0.16 0.4364

-0.15 0.4404

-0.14 0.4443

-0.13 0.4483

-0.12 0.4522

-0.11 0.4562

-0.10 0.4602

z Area
on Left

-0.10 0.4602

-0.09 0.4641

-0.08 0.4681

-0.07 0.4721

-0.06 0.4761

-0.05 0.4801

-0.04 0.4840

-0.03 0.4880

-0.02 0.4920

-0.01 0.4960

0.00 0.5000

0.01 0.5040

0.02 0.5080

0.03 0.5120

0.04 0.5160

0.05 0.5199

0.06 0.5239

0.07 0.5279

0.08 0.5319

0.09 0.5359

0.10 0.5398

0.11 0.5438

0.12 0.5478

0.13 0.5517

0.14 0.5557

0.15 0.5596

0.16 0.5636

0.17 0.5675

0.18 0.5714

0.19 0.5753

0.20 0.5793

z Area
on Left

0.20 0.5793

0.21 0.5832

0.22 0.5871

0.23 0.5910

0.24 0.5948

0.25 0.5987

0.26 0.6026

0.27 0.6064

0.28 0.6103

0.29 0.6141

0.30 0.6179

0.31 0.6217

0.32 0.6255

0.33 0.6293

0.34 0.6331

0.35 0.6368

0.36 0.6406

0.37 0.6443

0.38 0.6480

0.39 0.6517

0.40 0.6554

0.41 0.6591

0.42 0.6628

0.43 0.6664

0.44 0.6700

0.45 0.6736

0.46 0.6772

0.47 0.6808

0.48 0.6844

0.49 0.6879

0.50 0.6915

z Area
on Left

0.50 0.6915

0.51 0.6950

0.52 0.6985

0.53 0.7019

0.54 0.7054

0.55 0.7088

0.56 0.7123

0.57 0.7157

0.58 0.7190

0.59 0.7224

0.60 0.7257

0.61 0.7291

0.62 0.7324

0.63 0.7357

0.64 0.7389

0.65 0.7422

0.66 0.7454

0.67 0.7486

0.68 0.7517

0.69 0.7549

0.70 0.7580

0.71 0.7611

0.72 0.7642

0.73 0.7673

0.74 0.7704

0.75 0.7734

0.76 0.7764

0.77 0.7794

0.78 0.7823

0.79 0.7852

0.80 0.7881
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Cumulative Normal Distribution (cont.)

4 3 2 1 0 1 2 3 4
z

0.0

0.1

0.2

0.3

0.4

P
(z

)

area

z Area
on Left

0.80 0.7881

0.81 0.7910

0.82 0.7939

0.83 0.7967

0.84 0.7995

0.85 0.8023

0.86 0.8051

0.87 0.8078

0.88 0.8106

0.89 0.8133

0.90 0.8159

0.91 0.8186

0.92 0.8212

0.93 0.8238

0.94 0.8264

0.95 0.8289

0.96 0.8315

0.97 0.8340

0.98 0.8365

0.99 0.8389

1.00 0.8413

1.01 0.8438

1.02 0.8461

1.03 0.8485

1.04 0.8508

1.05 0.8531

1.06 0.8554

1.07 0.8577

1.08 0.8599

1.09 0.8621

1.10 0.8643

z Area
on Left

1.10 0.8643

1.11 0.8665

1.12 0.8686

1.13 0.8708

1.14 0.8729

1.15 0.8749

1.16 0.8770

1.17 0.8790

1.18 0.8810

1.19 0.8830

1.20 0.8849

1.21 0.8869

1.22 0.8888

1.23 0.8907

1.24 0.8925

1.25 0.8944

1.26 0.8962

1.27 0.8980

1.28 0.8997

1.29 0.9015

1.30 0.9032

1.31 0.9049

1.32 0.9066

1.33 0.9082

1.34 0.9099

1.35 0.9115

1.36 0.9131

1.37 0.9147

1.38 0.9162

1.39 0.9177

1.40 0.9192

z Area
on Left

1.40 0.9192

1.41 0.9207

1.42 0.9222

1.43 0.9236

1.44 0.9251

1.45 0.9265

1.46 0.9279

1.47 0.9292

1.48 0.9306

1.49 0.9319

1.50 0.9332

1.51 0.9345

1.52 0.9357

1.53 0.9370

1.54 0.9382

1.55 0.9394

1.56 0.9406

1.57 0.9418

1.58 0.9429

1.59 0.9441

1.60 0.9452

1.61 0.9463

1.62 0.9474

1.63 0.9484

1.64 0.9495

1.65 0.9505

1.66 0.9515

1.67 0.9525

1.68 0.9535

1.69 0.9545

1.70 0.9554

z Area
on Left

1.70 0.9554

1.71 0.9564

1.72 0.9573

1.73 0.9582

1.74 0.9591

1.75 0.9599

1.76 0.9608

1.77 0.9616

1.78 0.9625

1.79 0.9633

1.80 0.9641

1.81 0.9649

1.82 0.9656

1.83 0.9664

1.84 0.9671

1.85 0.9678

1.86 0.9686

1.87 0.9693

1.88 0.9699

1.89 0.9706

1.90 0.9713

1.91 0.9719

1.92 0.9726

1.93 0.9732

1.94 0.9738

1.95 0.9744

1.96 0.9750

1.97 0.9756

1.98 0.9761

1.99 0.9767

2.00 0.9772

z Area
on Left

2.00 0.9772

2.01 0.9778

2.02 0.9783

2.03 0.9788

2.04 0.9793

2.05 0.9798

2.06 0.9803

2.07 0.9808

2.08 0.9812

2.09 0.9817

2.10 0.9821

2.11 0.9826

2.12 0.9830

2.13 0.9834

2.14 0.9838

2.15 0.9842

2.16 0.9846

2.17 0.9850

2.18 0.9854

2.19 0.9857

2.20 0.9861

2.21 0.9864

2.22 0.9868

2.23 0.9871

2.24 0.9875

2.25 0.9878

2.26 0.9881

2.27 0.9884

2.28 0.9887

2.29 0.9890

2.30 0.9893
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Cumulative Normal Distribution (cont.)

4 3 2 1 0 1 2 3 4
z

0.0

0.1

0.2

0.3

0.4

P
(z

)

area

z Area
on Left

2.30 0.9893

2.31 0.9896

2.32 0.9898

2.33 0.9901

2.34 0.9904

2.35 0.9906

2.36 0.9909

2.37 0.9911

2.38 0.9913

2.39 0.9916

2.40 0.9918

2.41 0.9920

2.42 0.9922

2.43 0.9925

2.44 0.9927

2.45 0.9929

2.46 0.9931

2.47 0.9932

2.48 0.9934

2.49 0.9936

2.50 0.9938

2.51 0.9940

2.52 0.9941

2.53 0.9943

2.54 0.9945

2.55 0.9946

2.56 0.9948

2.57 0.9949

2.58 0.9951

2.59 0.9952

2.60 0.9953

z Area
on Left

2.60 0.9953

2.61 0.9955

2.62 0.9956

2.63 0.9957

2.64 0.9959

2.65 0.9960

2.66 0.9961

2.67 0.9962

2.68 0.9963

2.69 0.9964

2.70 0.9965

2.71 0.9966

2.72 0.9967

2.73 0.9968

2.74 0.9969

2.75 0.9970

2.76 0.9971

2.77 0.9972

2.78 0.9973

2.79 0.9974

2.80 0.9974

2.81 0.9975

2.82 0.9976

2.83 0.9977

2.84 0.9977

2.85 0.9978

2.86 0.9979

2.87 0.9979

2.88 0.9980

2.89 0.9981

2.90 0.9981

z Area
on Left

2.90 0.9981

2.91 0.9982

2.92 0.9982

2.93 0.9983

2.94 0.9984

2.95 0.9984

2.96 0.9985

2.97 0.9985

2.98 0.9986

2.99 0.9986

3.00 0.9987

3.01 0.9987

3.02 0.9987

3.03 0.9988

3.04 0.9988

3.05 0.9989

3.06 0.9989

3.07 0.9989

3.08 0.9990

3.09 0.9990

3.10 0.9990

3.11 0.9991

3.12 0.9991

3.13 0.9991

3.14 0.9992

3.15 0.9992

3.16 0.9992

3.17 0.9992

3.18 0.9993

3.19 0.9993

3.20 0.9993

z Area
on Left

3.20 0.9993

3.21 0.9993

3.22 0.9994

3.23 0.9994

3.24 0.9994

3.25 0.9994

3.26 0.9994

3.27 0.9995

3.28 0.9995

3.29 0.9995

3.30 0.9995

3.31 0.9995

3.32 0.9995

3.33 0.9996

3.34 0.9996

3.35 0.9996

3.36 0.9996

3.37 0.9996

3.38 0.9996

3.39 0.9997

3.40 0.9997

3.41 0.9997

3.42 0.9997

3.43 0.9997

3.44 0.9997

3.45 0.9997

3.46 0.9997

3.47 0.9997

3.48 0.9997

3.49 0.9998

3.50 0.9998

z Area
on Left

3.50 0.9998

3.51 0.9998

3.52 0.9998

3.53 0.9998

3.54 0.9998

3.55 0.9998

3.56 0.9998

3.57 0.9998

3.58 0.9998

3.59 0.9998

3.60 0.9998

3.61 0.9998

3.62 0.9999

3.63 0.9999

3.64 0.9999

3.65 0.9999

3.66 0.9999

3.67 0.9999

3.68 0.9999

3.69 0.9999

3.70 0.9999

3.71 0.9999

3.72 0.9999

3.73 0.9999

3.74 0.9999

3.75 0.9999

3.76 0.9999

3.77 0.9999

3.78 0.9999

3.79 0.9999

3.80 0.9999
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