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Welcome! This book is an introduction to engineering mechanics: 

statics, when acceleration is 0. Hopefully, this course will help you 

to see statics everywhere in the world – because it truly is 

everywhere! Concepts include: 

• particles and rigid body equilibrium equations, 

• free-body diagrams, 

• distributed loads, 

• shear and moment diagrams, 

• trusses, method of joints and sections, & 

• inertia. 

This is the first of two courses to describe how objects move and 

the forces that cause motion. This combines math and physics 

fundamentals with real-world application. A structured problem-

solving process is included, and by the end of the book, you should 

be able to recognize and describe motion all around you in your 

everyday life. 

Chapter 1 contains the fundamental math and physics concepts 

including vectors, Pythagorean theorem, sine and cosine laws, dot 

product, Newton’s laws, weight and mass, unit conversions, and the 

problem solving process. 

Chapter 2 explains the difference between particles and rigid 

bodies and introduces free-body diagrams and equilibrium 

equations for particles. 

Chapter 3 contains introductory rigid body concepts, including 

cross products, the right hand rule, torques/moments and couples, 

distributed loads and reaction/support forces. 

Chapter 4 introduces free-body diagrams and equilibrium 

equations for rigid bodies, as well as external forces, frictional and 

impending motion. 

Chapter 5 introduces trusses and two methods to solve truss 

systems: method of joints and method of sections. 
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Chapter 6 explains internal forces and breaks down shear/

moment diagrams. 

Chapter 7 introduces center of mass, mass moment of inertia, 

area moment of inertia, and the parallel axis theorem. 

Appendix A has a reference list of open textbooks. 

This book is a combination of many other open 

educational resources (OER) under similar creative 

commons licenses. This information is denoted inside a 

box like this. The links to the original source are very 

clearly included so you can go to those books to see 

what they say on other topics and try out their sample 

problems. 

Key Takeaways 

Most sections have a ‘key takeaway’ that includes text 

from me (Libby), containing the most important part of the 

section (Basically), where it occurs in the real world 

(Application), and what part of this course it connects to – 

the why are we learning this (Looking ahead). 

The last section of each chapter includes examples that were 

submitted by former ENGN 1230 statics students to help you learn. 

Statics and most engineering courses are ‘team sports’. I 

recommend finding a few study partners to struggle through the 

homework and study for the tests together. 

This book is a good start to helping you learn, but ultimately 

it’s up to you. Complete every homework and go to every class. 
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But that’s not enough. Look at the solutions that are posted and 

practice.  You’ll get out of it what you put in, and statics can be fun. 

It’s how engineers apply physics concepts to the real world. I hope 

you learn to love learning engineering as much as I enjoy teaching 

it. Hopefully, you’ll get a sense of the wonder of engineering through 

this book. 

 

Book cover image by malinoh from Pixabay 
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CHAPTER 1: 
FUNDAMENTAL CONCEPTS 

Static vs Dynamic Motion 
Before we start, what is the difference between static and 

dynamic? Static problems are all problems where there is no 

acceleration. As you’re driving down the road and you’re cruising 

along at a constant velocity, that is a static problem. As soon as you 

start to slow down for a stop light or speed up, you are in dynamic 

motion, and that’s much more complicated. For this course, we 

will only consider problems where there is no motion (such as the 

‘static’ is used in the English language), or constant velocity. Be 

prepared to give many examples of static versus dynamic, because 

before you can solve a problem, you have to know what type of 

problem it is! 

Introduction to Chapter 1: Fundamental Concepts 
This chapter has a lot of concepts from math and physics that 

are necessary for you to understand before we can apply them in 

engineering contexts. It’s kind of like: before you can write an essay 

to express your opinion, you need to know how to write the a, 

b, c’s and what each word means. Here, you need to know how 

to compute a cross product before you can calculate how much 

Torque is created from a force. 

Some of this might be new. Some of this might be familiar, but we 

might be applying it in a different way. (Such as calculating torque – 

this is not what you learned in high school physics!) Some of it might 

feel new, so practice practice practice! 

Here are the sections in this Chapter: 

• 1.1 Math & Physics Important Concepts  (Mass, Weight, Slugs, 

Trig, Units, Conversions, Scalar, Vector, Newton’s Laws) 

• 1.2 XYZ Coordinate Frame 

• 1.3 Vectors 
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• 1.4 Dot Product 

• 1.5 Cross Products 

• 1.6 Torque/Moment 

• 1.7 Problem Solving Process 

• 1.8 Student examples 

Here are the key equations and concepts you will learn in this 

chapter 
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1.1 Preparatory Concepts 

1.1.1 Scalar vs. Vector 

Many familiar physical quantities can be specified 

completely by giving a single number and the 

appropriate unit. For example, “a class period lasts 50 

min” or “the gas tank in my car holds 65 L” or “the 

distance between two posts is 100 m.” A physical 

quantity that can be specified completely in this manner 

is called a scalar quantity. Scalar is a synonym of 

“number.” Time, mass, distance, length, volume, 

temperature, and energy are examples 

of scalar quantities. 

Scalar quantities that have the same physical units can 

be added or subtracted according to the usual rules of 

algebra for numbers. For example, a class ending 10 min 

earlier than 50 min lasts (50 min – 10 min) = 40 min. 

Similarly, a 60-cal serving of corn followed by a 200-cal 

serving of donuts gives (60 cal + 200 cal) = 260 cal of 

energy. When we multiply a scalar quantity by a 

number, we obtain the same scalar quantity but with a 

larger (or smaller) value. For example, if yesterday’s 

breakfast had 200 cal of energy and today’s breakfast 

has four times as much energy as it had yesterday, then 

today’s breakfast has 4(200 cal) = 800 cal of energy. Two 

scalar quantities can also be multiplied or divided by 
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each other to form a derived scalar quantity. For 

example, if a train covers a distance of 100 km in 1.0 h, 

its speed is 100.0 km/1.0 h = 27.8 m/s, where the speed 

is a derived scalar quantity obtained by dividing distance 

by time. 

Many physical quantities, however, cannot be 

described completely by just a single number of physical 

units. For example, when the U.S. Coast Guard 

dispatches a ship or a helicopter for a rescue mission, 

the rescue team must know not only the distance to the 

distress signal, but also the direction from which the 

signal is coming so they can get to its origin as quickly 

as possible. Physical quantities specified completely by 

giving a number of units (magnitude) and a direction are 

called vector quantities. Examples of vector quantities 

include displacement, velocity, position, force, and 

torque. In the language of mathematics, physical vector 

quantities are represented by mathematical objects 

called vectors. We can add or subtract two vectors, and 

we can multiply a vector by a scalar or by another 

vector, but we cannot divide by a vector. The operation 

of division by a vector is not defined. 
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Source: University Physics Volume 1, OpenStax CNX 

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/2-1-scalars-and-vectors 

Key Takeaways 

Basically: a scalar has only magnitude, whereas a vector 

has magnitude and direction. 

Application: I might have gone for a 4 km walk (scalar) but 

whether I walked in a straight line, took turns, or went 2 km 

out and turned around to walk 2 km back would tell me a 

lot more information (vector). 

Looking ahead: We will talk about this again in sections 1.3 

on vectors and in section 1.4 and 1.5 on dot products and 

cross products. 

1.1.2 Newton’s Laws 

1st Law: 
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Newton’s first law states that: “A body at rest will 
remain at rest unless acted on by an unbalanced force. 
A body in motion continues in motion with the same 
speed and in the same direction unless acted upon by 
an unbalanced force.” 

This law, also sometimes called the “law of inertia”, 

means that bodies maintain their current velocity unless 

a force is applied to change that velocity. If an object is 

at rest with zero velocity it will remain at rest until some 

force begins to change that velocity, and if an object is 

moving at a set speed and in a set direction it will 

remain at that same velocity until some force begins to 

change that velocity. 

Net Forces: It is important to note that the net 
force is what will cause a change in velocity. The net 

force is the sum of all forces acting on the body. For 

example, we can imagine gently pushing on the rock in 

the figure above and observing that the rock does not 

move. This is because we will have a friction force equal 

in magnitude and opposite in direction opposing our 

gentle pushing force. The sum of these two forces will 

be equal to zero, therefore the net force is zero and the 

change in velocity is zero. 

Rotational Motion: Newton’s first law also applies to 

moments and rotational velocities. A body will maintain 

it’s current rotational velocity until a net moment is 

exerted to change that rotational velocity. This can be 

seen in things like toy tops, flywheels, stationary bikes, 

and other objects that will continue spinning once 

started until brakes or friction stop them. 
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Source: Engineering Mechanics, Jacob Moore et al., 

http://mechanicsmap.psu.edu/websites/

1_mechanics_basics/newtons_first_law/firstlaw.html 

 

2nd Law: 

Newton’s second law states that: “When a net force 
acts on any body with mass, it produces an 
acceleration of that body. The net force will be equal to 
the mass of the body times the acceleration of the 
body” 

 

 

You will notice that the force and the acceleration in 

the equation above have an arrow above them. This 

means that they are vector quantities, having both a 

magnitude and a direction. Mass on the other hand is a 

scalar quantity having only a magnitude. Based on the 

above equation, you can infer that the magnitude of the 

net force acting on the body will be equal to the mass of 

the body times the magnitude of the acceleration, and 

that the direction of the net force on the body will be 

equal to the direction of the acceleration of the body. 
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Rotational Motion: Newton’s second law also applies 

to moments and rotational velocities. The revised 

version of the second law equation states that the net 

moment acting on the object will be equal to the mass 

moment of inertia of the body about the axis of rotation 

(I) times the angular acceleration of the body. 

 

 

You should again notice that the moment and the 

angular acceleration of the body have arrows above 

them, indicating that they are vector quantities with 

both a magnitude and direction. The mass moment of 

inertia on the other hand is a scalar quantity having only 

a magnitude. The magnitude of the net moment will be 

equal to the mass moment of inertia times the 

magnitude of the angular acceleration, and the direction 

of the net moment will be equal to the direction of the 

angular acceleration. 

Source: Engineering Mechanics, Jacob Moore et 

al., http://mechanicsmap.psu.edu/websites/

1_mechanics_basics/newtons_second_law/

secondlaw.html 

 

3rd Law: 

Newton’s Third Law states “For any action, there is 
an equal and opposite reaction.” By “action” Newton 

meant a force, so for every force one body exerts on 

another body, that second body exerts a force of equal 

magnitude but opposite direction back on the first body. 
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Since all forces are exerted by bodies (either directly or 

indirectly), all forces come in pairs, one acting on each 

of the bodies interacting. 

Though there may be two equal and opposite forces 

acting on a single body, it is important to remember that 

for each of the forces a Third Law pair acts on a 

separate body. This can sometimes be confusing when 

there are multiple Third Law pairs at work. Below are 

some examples of situations where multiple Third Law 

pairs occur. 

Source: Engineering Mechanics, Jacob Moore et al., 

http://mechanicsmap.psu.edu/websites/

1_mechanics_basics/newtons_third_law/

thirdlaw.html 
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Key Takeaways 

Basically: These 3 laws form the foundation of statics and 

dynamics. It makes our problems interesting! In statics, we 

don’t do a lot with rotation. 

• 1st law: the motion of an object won’t change unless 

there is a force to cause the change. 

• 2nd law: Combination of all forces = mass * 

acceleration 

• 3rd law: A system of interacting objects can be split 

up into parts, where forces are used to model the 

other part. Forces are equal (same size) and opposite 

(their directions cancel out – one up, one down 

Application: 1st law: a rock rolling down the hill will keep 

going unless it hits a tree. 2nd law: the amount of forces on 

the rock and how massive (heavy) it is will determine how 

much it is accelerating (or decelerating). 3rd law: the rock is 

pushing on the ground with the same amount of force as 

the ground is pushing on the rock, but in the opposite 

direction. 

Looking ahead: You’ll see these concepts again in Ch 7 on 

Inertia (1st law), Section 2.3 and 4.3 on equillibrium 

equations (2nd law), Section 4.2 on system free-body 

diagrams (3rd law). 
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1.1.3 Units 

Giving numerical values for physical quantities and 

equations for physical principles allows us to 

understand nature much more deeply than qualitative 

descriptions alone. To comprehend these vast ranges, 

we must also have accepted units in which to express 

them. We shall find that even in the potentially 

mundane discussion of meters, kilograms, and seconds, 

a profound simplicity of nature appears: all physical 

quantities can be expressed as combinations of only 

seven base physical quantities. 

We define a physical quantity either by specifying 

how it is measured or by stating how it is calculated 

from other measurements. For example, we might 

define distance and time by specifying methods for 

measuring them, such as using a meter stick and a 

stopwatch. Then, we could define average speed by 

stating that it is calculated as the total distance traveled 

divided by time of travel. 

Measurements of physical quantities are expressed in 

terms of units, which are standardized values. For 

example, the length of a race, which is a physical 

quantity, can be expressed in units of meters (for 

sprinters) or kilometers (for distance runners). Without 

standardized units, it would be extremely difficult for 

scientists to express and compare measured values in a 

meaningful way. 

Two major systems of units are used in the world: SI 
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units (for the French Système International d’Unités), 

also known as the metric system, and English units (also 

known as the customary or imperial system). English 

units were historically used in nations once ruled by the 

British Empire and are still widely used in the United 

States. English units may also be referred to as 

the foot–pound–second (fps) system, as opposed to 

the centimeter–gram–second (cgs) system. 

SI Units: Base and Derived Units 

In any system of units, the units for some physical 

quantities must be defined through a measurement 

process. These are called the base quantities for that 

system and their units are the system’s base units. All 

other physical quantities can then be expressed as 

algebraic combinations of the base quantities. Each of 

these physical quantities is then known as a derived 
quantity and each unit is called a derived unit. The 

choice of base quantities is somewhat arbitrary, as long 

as they are independent of each other and all other 

quantities can be derived from them. Typically, the goal 

is to choose physical quantities that can be measured 

accurately to a high precision as the base quantities. 

The reason for this is simple. Since the derived 
units can be expressed as algebraic combinations of the 

base units, they can only be as accurate and precise as 

the base units from which they are derived. 

Based on such considerations, the International 

Standards Organization recommends using seven base 

quantities, which form the International System of 

Quantities (ISQ). These are the base quantities used to 
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define the SI base units. The following table lists these 

seven ISQ base quantities and the corresponding SI base 

units. 

ISQ Base 
Quantity 

SI 
Base 
Unit 

Length Meter 
(m) 

Mass Kilogr
am (kg) 

Time Secon
d (s) 

Electrical 
current 

Ampe
re (A) 

Thermodyna
mic temp. 

Kelvin 
(K) 

Amount of 
substance 

Mole 
(mol) 

Luminous 
intensity 

Cande
la (cd) 

You are probably already familiar with some derived 

quantities that can be formed from the base quantities. 

For example, the geometric concept of area is always 

calculated as the product of two lengths. Thus, area is a 

derived quantity that can be expressed in terms of SI 

base units using square meters (m x m = m2(m×m=m2)." 

role="presentation" style="font-family: proxima-nova, 

sans-serif;padding: 1px 0px;margin: 0px;font-size: 

17.44px;vertical-align: baseline;background: 

#ffffff;border: 0px;line-height: 0;text-indent: 0px;text-

align: left;text-transform: none;font-style: normal;font-
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weight: 400;letter-spacing: normal;float: none;direction: 

ltr;max-width: none;max-height: none;min-width: 

0px;min-height: 0px;color: #373d3f">). 

Similarly, volume is a derived quantity that can be 

expressed in cubic meters (m3). Speed is length per 

time; so in terms of SI base units, we could measure it in 

meters per second (m/s). Volume mass density (or just 

density) is mass per volume, which is expressed in terms 

of SI base units such as kilograms per cubic meter 

(kg/m3). Angles can also be thought of as derived 

quantities because they can be defined as the ratio of 

the arc length subtended by two radii of a circle to the 

radius of the circle. This is how the radian is defined. 

Depending on your background and interests, you may 

be able to come up with other derived quantities, such 

as the mass flow rate (kg/s) or volume flow rate (m3/s) 

of a fluid, electric charge (A·s), mass flux density 

[kg/(m2·s),[kg/(m2·s)]," role="presentation" style="font-

family: proxima-nova, sans-serif;padding: 1px 

0px;margin: 0px;font-size: 17.44px;vertical-align: 

baseline;background: #ffffff;border: 0px;line-height: 

0;text-indent: 0px;text-align: left;text-transform: 

none;font-style: normal;font-weight: 400;letter-spacing: 

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;color: 

#373d3f"> and so on. We will see many more examples 

throughout this text. For now, the point is that every 

physical quantity can be derived from the seven base 

quantities, and the units of every physical quantity can 

be derived from the seven SI base units. 

Source: University Physics Volume 1, OpenStax CNX, 
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https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/1-2-units-and-standards/ 

While most Canadian companies use SI, much manufacturing still 

uses English units, so it’s important for you to be familiar with them. 

What is a big number in feet? What is small? It’s important to know. 

The most important advice is to stay in one unit system. So if you 

are doing a homework problem that has a mixture, convert to one 

system to be consistent. Challenge your self to try the one you aren’t 

comfortable with. Here is a table of the most common quantities 

that we’ll use in this class: 

Quantity SI Unit English 

Length 
m (meter), km 
(kilometer), mm 
(milimeter) 

ft (foot), mi (mile), in 
(inch) 

Mass kg (kilogram) slug 

Force N (Newton) lb (pound) 

Pressure Pa (Pascal) = N/m2 
psi (pound per 
square inch) = lb/
in2 

Very helpful additional information about units is at this webpage: 

https://www.physics.nist.gov/cuu/Units/index.html 

 

Key Takeaways 
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Basically: Units give us a standard so we canuse the same 

language to describe a concept. 

Application: In 1999, after taking 286 days for NASA Mars 

Orbiter satellite to get to Mars, a conversion error between 

N and lb caused the $125 million satellite to be lost, forever. 

Click here for more fun conversion error stories. If you 

want to design ANYTHING, you need to be sure everyone 

involved is using the same unit system. 

Looking Ahead: The next section (1.1.4) will look at 

converting the units back and forth between the two 

systems. 

1.1.4 Measurement Conversions 

It is often necessary to convert from one unit to 

another. For example, if you are reading a European 

cookbook, some quantities may be expressed in units of 

liters and you need to convert them to cups. Or perhaps 

you are reading walking directions from one location to 

another and you are interested in how many miles you 

will be walking. In this case, you may need to convert 

units of feet or meters to miles. 

Let’s consider a simple example of how to convert 

units. Suppose we want to convert 80 m to kilometers. 
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The first thing to do is to list the units you have and the 

units to which you want to convert. In this case, we have 

units in meters and we want to convert to kilometers. 

Next, we need to determine a conversion factor relating 

meters to kilometers. A conversion factor is a ratio that 

expresses how many of one unit are equal to another 

unit. For example, there are 12 in. in 1 ft, 1609 m in 1 mi, 

100 cm in 1 m, 60 s in 1 min, and so on. In this case, we 

know that there are 1000 m in 1 km. Now we can set up 

our unit conversion. We write the units we have and 

then multiply them by the conversion factor so the units 

cancel out, as shown: 

[latex]80 m\times\frac{1 km}{1000 m}=0.080 

km[/latex] 

Note that the unwanted meter unit cancels, leaving 

only the desired kilometer unit. You can use this method 

to convert between any type of unit. Now, the 

conversion of 80 m to kilometers is simply the use of a 

metric prefix, as we saw in the preceding section, so we 

can get the same answer just as easily by noting that 

[latex]80m=8.0\times10^1m=8.0\

times10^{-2}km=0.080km [/latex] 

[latex]80m=8.0\times10^1m=8.0\

times10^{-2}km=0.080km [/latex] 

since “kilo-” means 103 and 1=−2+3." 

role="presentation" style="font-family: proxima-nova, 

sans-serif;padding: 1px 0px;margin: 0px;font-size: 

17.44px;vertical-align: baseline;background: 

#ffffff;border: 0px;line-height: 0;text-indent: 0px;text-

align: left;text-transform: none;font-style: normal;font-
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weight: 400;letter-spacing: normal;float: none;direction: 

ltr;max-width: none;max-height: none;min-width: 

0px;min-height: 0px;color: #373d3f">1=−2+3. However, 

using conversion factors is handy when converting 

between units that are not metric or when converting 

between derived units, as the following examples 

illustrate. 

Source: University Physics Volume 1, OpenStax CNX, 

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/1-3-unit-conversion/ 

Going back and forth between SI and English will become very 

useful skill. If you can memorize km to mi, ft to m, and inches to 

ft, you’ll be able to communicate better with coworkers. Here are 

common conversions you’ll need for this course: 

Quantity SI English Convert 

Length 
1 km = 1000 m 

1 m = 1000 mm 

1 mi = 5,280 ft 

1 ft = 12 in 

1 m = 3.28 ft 

2.2 km = 1 mi 

Mass kg slug 1 slug = 14.6 kg 

Force N lb 1 lb = 4.448 N 

Pressure Pa psi 1psi = 6895 Pa 

All of the other units that we will encounter will be a mix of these 

units (intensity w = N/m or lb/ft). One additional conversion that is 

common is 1 lb = 2.2 kg, though this only works on Earth because it 

is mixing kg and lb (see next section). For a full table, MechanicsMap 

has a pdf available: http://mechanicsmap.psu.edu/websites/

UnitConversion.pdf 
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Units outside the SI that 
are accepted for use with 
the SI 

Name Symb
ol Value in SI units 

minute (time) min 1 min = 60 s 

hour h 1 h = 60 min = 3600 s 

day d 1 d = 24 h = 86 400 s 

degree (angle) ° 1° = ( /180) rad 

minute (angle) 1  = (1/60)° = ( /10 
800) rad 

second (angle) 1  = (1/60)  = ( /648 
000) rad 

liter L 1 L = 1 dm3 = 10-3 m3 

metric ton (a) t 1 t = 103 kg 

neper Np 1 Np = 1 

bel (b) B 1 B = (1/2) ln 10 Np (c) 

electronvolt (d) eV 1 eV = 1.602 18 x 10-19 J, 
approximately 

unified atomic 
mass unit (e) u 1 u = 1.660 54 x 10-27 kg, 

approximately 

astronomical 
unit (f) au 1 au = 149 597 870 700 

m, exactly 
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(a) In many countries, this unit is called 
“tonne.” 
(b) The bel is most commonly used with the SI 
prefix deci: 1 dB = 0.1 B. 
(c) Although the neper is coherent with SI units 
and is accepted by the CIPM, it has not been 
adopted by the General Conference on Weights 
and Measures (CGPM, Conférence Générale des 
Poids et Mesures) and is thus not an SI unit. 
(d) The electronvolt is the kinetic energy 
acquired by an electron passing through a 
potential difference of 1 V in vacuum. The value 
must be obtained by experiment, and is 
therefore not known exactly. 
(e) The unified atomic mass unit is equal to 1/12 
of the mass of an unbound atom of the nuclide 
12C, at rest and in its ground state. The value 
must be obtained by experiment, and is 
therefore not known exactly. 
(f) The astronomical unit of length was 
redefined by the XXVIII General Assembly 
of the International Astronomical Union 
(Resolution B2, 2012). 

Source: https://www.physics.nist.gov/cuu/Units/

outside.html 
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Key Takeaways 

Basically: Different industries use different standards. 

English is common in the US. SI is standard many other 

places, however not generally in aerospace. 

Application: In 1999, after taking 286 days for NASA Mars 

Orbiter satellite to get to Mars, a conversion error between 

N and lb caused the $125 million satellite to be lost, forever. 

Click here for more fun conversion error stories. If you 

want to design ANYTHING, you need to be sure everyone 

involved is using the same unit system. 

Looking Ahead: Always always always check what unit 

you’re using. So many students lose points on homework 

and the test because they aren’t paying attention to units. 

1.1.5 Weight vs. Mass 

Weight is the force exerted by gravity. While all 

objects with mass exert an attractive force of gravity on 
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all other objects with mass, that force is usually 

negligible unless the mass of one of the objects is very 

large. For an object near the surface of the Earth, we 

can, to a very good degree of approximation, assume 

that the only force of gravity on the object is from the 

Earth. We usually label the force of gravity on an object 

as Fg. All objects near the surface of the Earth will 

experience a weight, as long as they have a mass. If an 

object has a mass, m, and is located near the surface of 

the Earth, it will experience a force (its weight) that is 

given by: 

[latex]\vec F_g=m\vec g[/latex] 

where g is the Earth’s “gravitational field” vector and 

points towards the centre of the Earth. Near the surface 

of the Earth, the magnitude of the gravitational field is 

approximately g = 9.81 m/s2. The gravitational field is a 

measure of the strength of the force of gravity from the 

Earth (it is the gravitational force per unit mass). The 

magnitude of the gravitational field is weaker as you 

move further from the centre of the Earth (e.g. at the 

top of a mountain, or in Earth’s orbit). The gravitational 

field is also different on different planets; for example, 

at the surface of the moon, it is approximately gm = 

1.62 m/s2 (six times less) – thus the weight of an object 

is six times less at the surface of the moon (but its mass 

is still the same). As we will see, the magnitude of the 

gravitational field from any spherical body of mass M 

(e.g a planet) is given by: 

[latex]g(r)=G\frac{M}{r^2}[/latex] 

 

26  |  Statics



where G = 6.67 × 10−11 is Newton’s constant of gravity, 

and r is the distance from the centre of the object. 

Although we have not yet introduced the concept of 

mass, it is worth emphasizing that mass and weight are 

different (they have different dimensions). Mass is an 

intrinsic property of an object, whereas weight is a force 

of gravity that is exerted on that object because it has 

mass and is located next to another object with mass 

(e.g. the Earth). On Earth, when we measure our weight, 

we usually do so by standing on a spring scale, which is 

designed to measure a force by compressing a spring. 

We are thus measuring mg, which can easily be related 

to our mass since, on Earth, weight and mass are related 

by a factor of g = 9.81 m/s2; this is usually what leads to 

the confusion between mass and weight. 

Source: Introductory Physics, Ryan Martin et al., 

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=4c3c2c75-0029-4c9e-967f-41f178bebbbb page 

106 

 

In the English language, the words ‘mass’ and ‘weight’ are used 

interchangeably. A person might say, “I weigh 50 kg”, but in statics 

language, that’s wrong! Or more accurately, that language isn’t 

precise enough for statics. 
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An object’s mass is the same whether they are on the moon, 

Mars, or Earth. However, their weight changes because the constant 

of gravity with which that planet is pulling changes (see above 

description comparing the moon and Earth). 

g = 9.81 m/s2 (SI) and g = 32.2 ft/s2 (English) 

[latex]\vec F_g=m\vec g[/latex] 

Weight = mass * gravitational constant 

Units of mass are kg (SI) or slugs (English) whereas units of 

weight/force are N (SI) or lb (English). Because ‘slugs’ is such an odd, 

unfamiliar unit, the graphic on the left uses real slugs to help you 

remember to say “my mass is 50 kg (or 3.43 slug)” or “I weigh 490 N 

(or 110 lb)”. 
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While most Canadian companies use SI units, it’s important to be 

familiar with English, so you should learn slugs. You don’t want to be 

excluded from a conversation at your future job. 

Note lbm  (pound-mass) is not used in this book, though some 

textbooks use it as a mass value. When lb is used, it is assumed to be 

lbf (pound-force). 

Key Takeaways 

Basically: Mass and force are two different quantities. 

Mass is in kg (SI) or slug (English) and weight is in N (SI) and 

lb (English). 

Application: Mass stays the same, but weight changes 

from the Earth to the moon. 

Looking ahead: This will become very important when we 

look at forces in Section 4.1. 

1.1.6 Pythagorean Theorem 

Right triangle: a triangle containing a 90° angle. 

Pythagorean theorem: a relation among the three sides 

of a right triangle which states that the square of the 
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hypotenuse is equal to the sum of the squares of the 

other two sides (legs). 

Using the Pythagorean theorem can find the length of 

the missing side in a right triangle. 

▪ c is the longest side of the triangle (hypotenuses). 

▪ Other two sides (legs) of the triangle a and b can be 

exchanged. 

Source: Key Concepts of Intermediate Level  Math, 

Meizhong Wang and the College of New Caledonia, 

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=d8bdc88b-5439-4652-b4bb-2948f0d5c625, 

page 136. 

 

A special cases of the right triangle is called a 3-4-5 triangle, 

or a Pythagorean triple. The two short sides are 3 and 4, and the 

hypotenuse is 5! Many of your homework problems will use this 

coincidence so you can save on the math by remembering 3-4-5 

triangles: 32 + 42 = 52,      9 + 16 = 25. Wow! 
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Key Takeaways 

Basically: The pythagorean theorum will help you find a 

lot of information throughout this course. The longest side 

c2 = a2 + b2 

Application: If I have a 6 ft ladder leaned up against a wall 

whose base is 2 ft from the wall, the pythagorean theorum 

helps you to calculate the vertical height of the ladder (b2 = 

62 – 22 ). 

Looking Ahead: You’ll use this to help find geometrical 

aspects of the problems, expecially when we get into 

trusses in Ch 5. 

1.1.7 Sine/Cosine Law’s 

The Six Basic Trigonometric Functions 

Trigonometric functions allow us to use angle 

measures, in radians or degrees, to find the coordinates 

of a point on any circle—not only on a unit circle—or to 

find an angle given a point on a circle. They also define 

the relationship among the sides and angles of a 

triangle. 
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To define the trigonometric functions, first consider 

the unit circle centered at the origin and a 

point P=(x,y)P=(x,y)" role="presentation" style="overflow: 

initial;font-style: normal;font-weight: normal;line-

height: normal;font-size: 14px;text-indent: 0px;text-

align: left;text-transform: none;letter-spacing: 

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;border: 

0px;padding: 0px;margin: 0px">P=(x,y) on the unit 

circle. Let θθθ" role="presentation" style="overflow: 

initial;font-style: normal;font-weight: normal;line-

height: normal;font-size: 14px;text-indent: 0px;text-

align: left;text-transform: none;letter-spacing: 

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;border: 

0px;padding: 0px;margin: 0px"> be an angle with an 

initial side that lies along the positive xxx" 

role="presentation" style="overflow: initial;font-style: 

normal;font-weight: normal;line-height: normal;font-

size: 14px;text-indent: 0px;text-align: left;text-

transform: none;letter-spacing: normal;float: 

none;direction: ltr;max-width: none;max-height: 

none;min-width: 0px;min-height: 0px;border: 

0px;padding: 0px;margin: 0px">-axis and with a terminal 

side that is the line segment OP. We can then define the 

values of the six trigonometric functions for θ θθ" 

role="presentation" style="overflow: initial;font-style: 

normal;font-weight: normal;line-height: normal;font-

size: 14px;text-indent: 0px;text-align: left;text-

transform: none;letter-spacing: normal;float: 

none;direction: ltr;max-width: none;max-height: 

none;min-width: 0px;min-height: 0px;border: 
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0px;padding: 0px;margin: 0px">in terms of the 

coordinates x xx" role="presentation" style="overflow: 

initial;font-style: normal;font-weight: normal;line-

height: normal;font-size: 14px;text-indent: 0px;text-

align: left;text-transform: none;letter-spacing: 

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;border: 

0px;padding: 0px;margin: 0px">and y.y.y." 

role="presentation" style="overflow: initial;font-style: 

normal;font-weight: normal;line-height: normal;font-

size: 14px;text-indent: 0px;text-align: left;text-

transform: none;letter-spacing: normal;float: 

none;direction: ltr;max-width: none;max-height: 

none;min-width: 0px;min-height: 0px;border: 

0px;padding: 0px;margin: 0px"> 

Let P=(x,y) be a point on the unit circle centered at the 

origin O. Let θθ" role="presentation" style="overflow: 
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initial;font-style: normal;font-weight: normal;line-

height: normal;font-size: 14px;text-indent: 0px;text-

align: left;text-transform: none;letter-spacing: 

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;border: 

0px;padding: 0px;margin: 0px">θ be an angle with an 

initial side along the positive x-axis and a terminal side 

given by the line segment OP. The trigonometric 

functions are then defined as 

$$\sin\theta=y\;\;\;\csc\theta=\frac{1}{y}\\\cos\

theta=x\;\;\;\sec\theta=\frac{1}{x}\\\tan\

theta=\frac{y}{x}\;\;\;\cot\theta=\frac{x}{y}$$ 

If x=0x=0,secθx=0,secθ" role="presentation" 

style="overflow: initial;font-style: normal;font-weight: 

normal;line-height: normal;font-size: 14px;text-indent: 

0px;text-align: left;text-transform: none;letter-spacing: 

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;border: 

0px;padding: 0px;margin: 0px">, secθ and tanθ are 

undefined. If y=0, then cotθ and cscθ are undefined. 

We can see that for a point P=(x,y) on a circle of radius 

r with a corresponding angle θ,θ," role="presentation" 

style="overflow: initial;font-style: normal;font-weight: 

normal;line-height: normal;font-size: 14px;text-indent: 
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0px;text-align: left;text-transform: none;letter-spacing: 

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;border: 

0px;padding: 0px;margin: 0px">θ, the coordinates x and 

y satisfy: 

[latex]\cos \theta =\frac {x}{r}[/latex] 

[latex]x=r\cos\theta[/latex] 

[latex]\sin \theta =\frac {y}{r}[/latex] 

[latex]x=r\sin\theta[/latex] 

 

 

The values of the other trigonometric functions can 

be expressed in terms of x, y, and r: 

The table below shows the values of sine and cosine at 

the major angles in the first quadrant. From this table, 

we can determine the values of sine and cosine at the 

corresponding angles in the other quadrants. The values 
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of the other trigonometric functions are calculated 

easily from the values of sinθ and cosθ: 

Trigonometric Identities 

A trigonometric identity is an equation involving 

trigonometric functions that is true for all angles θθ" 

role="presentation" style="overflow: initial;font-style: 

normal;font-weight: normal;line-height: normal;font-

size: 14px;text-indent: 0px;text-align: left;text-

transform: none;letter-spacing: normal;float: 

none;direction: ltr;max-width: none;max-height: 

none;min-width: 0px;min-height: 0px;border: 

0px;padding: 0px;margin: 0px">θ for which the 

functions are defined. We can use the identities to help 

us solve or simplify equations. The main trigonometric 

identities are listed next. 

 

36  |  Statics



Source: Calculus Volume 1, Gilbert Strang & Edwin 

“Jed” Herman, https://openstax.org/books/calculus-

volume-1/pages/1-3-trigonometric-functions 

We often refer to this as SOH-CAH-TOA: 

• Sine = Opposite / Hypotenuse  >>  S = O/H    >>  SOH 

• Cosine = Adjacent / Hypotenuse >> C = A / H >> CAH 

• Tangent = Opposite / Adjacent >> T = O / A   >> TOA 
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I remember that cos is close – the side that’s close to the angle is 

cosine. (It kind of rhymes and ‘close’ is a more familiar word than 

‘adjacent’). 

 

Key Takeaways 

Basically: Trigonometric functions will help you to solve 

problems. You’ll use SOH-CAH-TOA in many statics 

problems, whether to componentize a vector or resolve a 

force. 

Application: A 6ft ladder leaning up against a house is at a 

60 degree angle. We can find the vertical height where the 

ladder reaches the house by using height = 6 ft * sin 60 

degrees. (sin = opp / hyp) 

Looking Ahead: Chapter 4 (forces) and Chapter 5 (trusses) 

will use calculation of angles a lot. 
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1.2 XYZ Coordinate Frame 

We need a standard to be able to share a common language. The 

Cartesian coordinate frame lets us express the location of a point so 

that others can understand what we’re talking about.In this section, 

we’ll look at 2d and 3d coordinate frames. 

1.2.1 Cartesian Coordinate Frame in 
2D 

Vectors are usually described in terms of their 

components in a coordinate system. Even in everyday 

life we naturally invoke the concept of orthogonal 

projections in a rectangular coordinate system. For 

example, if you ask someone for directions to a 

particular location, you will more likely be told to go 40 

km east and 30 km north than 50 km in the direction 

37° north of east. 

In a rectangular (Cartesian) x-y coordinate system in a 

plane, a point in a plane is described by a pair of 

coordinates (x, y). In a similar fashion, a 

vector [latex]\vec A[/latex] in a plane is described by a 

pair of its vector coordinates. The x-coordinate of 

vector A→" role="presentation">[latex]\vec A[/latex] is 

called its x-component and the y-coordinate of 

vector A→" role="presentation">[latex]\vec A[/latex] is 
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called its y-component. The vector x-component is a 

vector denoted by [latex]\vec A_x[/latex]. The 

vector y-component is a vector denoted by [latex]\vec 

A_y[/latex]. In the Cartesian system, the x and y vector 
components of a vector are the orthogonal projections 

of this vector onto the x– and y-axes, respectively. In 

this way, following the parallelogram rule for vector 

addition, each vector on a Cartesian plane can be 

expressed as the vector sum of its vector components: 

[latex]\vec A =\vec A_x+\vec A_y[/latex] 

As illustrated in the figure below, vector [latex]\vec 

A[/latex] is the diagonal of the rectangle where 

the x-component [latex]\vec A_x[/latex] is the side 

parallel to the x-axis and the y-component [latex]\vec 

A_y[/latex] is the side parallel to the y-axis. Vector 

component [latex]\vec A_x[/latex] is orthogonal to 

vector component [latex]\vec A_y[/latex]. 
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It is customary to denote the positive direction on 

the x-axis by the unit vector i and the positive direction 

on the y-axis by the unit vector j. Unit vectors of the 
axes, i and j, define two orthogonal directions in the 

plane. As shown in the figure above, the x– and y– 

components of a vector can now be written in terms of 

the unit vectors of the axes: 

[latex]\vec A_x = A_x\underline{\hat{i}}[/latex] 

[latex]\vec A_y = A_y\underline{\hat{ j}}[/latex] 

The vectors [latex]\vec A_x and \vec A_y[/latex] 

defined by the figure above are the vector components of 

vector [latex]\vec A[/latex] A→" role="presentation" 

style="font-family: proxima-nova, sans-serif; padding: 
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1px 0px; margin: 0px; font-size: 17.44px; vertical-align: 

baseline; background: transparent; border: 0px; line-

height: 0; text-indent: 0px; text-align: left; text-

transform: none; font-style: normal; font-weight: 

normal; letter-spacing: normal; float: none; direction: 

ltr; max-width: none; max-height: none; min-width: 

0px; min-height: 0px;"> . The numbers Ax and Ay that 

define the vector components above are the scalar 

components of vector [latex]\vec A[/latex] A→" 

role="presentation" style="font-family: proxima-nova, 

sans-serif; padding: 1px 0px; margin: 0px; font-size: 

17.44px; vertical-align: baseline; background: 

transparent; border: 0px; line-height: 0; text-indent: 

0px; text-align: left; text-transform: none; font-style: 

normal; font-weight: normal; letter-spacing: normal; 

float: none; direction: ltr; max-width: none; max-height: 

none; min-width: 0px; min-height: 0px;">A→" 

role="presentation" style="font-family: proxima-nova, 

sans-serif; padding: 1px 0px; margin: 0px; font-size: 

17.44px; vertical-align: baseline; background: 

transparent; border: 0px; line-height: 0; text-indent: 

0px; text-align: left; text-transform: none; font-style: 

normal; font-weight: normal; letter-spacing: normal; 

float: none; direction: ltr; max-width: none; max-height: 

none; min-width: 0px; min-height: 0px;"> . Combining 

the diagram above with the equations above, we 

obtain the component form of a vector: 

[latex]\vec A=A_x\underline{\hat {i}} + A_y\

underline{\hat { j}}[/latex] 

If we know the coordinates b(xb, yb) of the origin point 
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of a vector (where b stands for “beginning”) and the 

coordinates e(xe, ye) of the end point of a vector 

(where e stands for “end”), we can obtain the scalar 

components of a vector simply by subtracting the origin 

point coordinates from the end point coordinates: 

[latex]A_x = x_e - x_b[/latex] 

[latex]A_y = y_e - y_b[/latex] 

1.2.2. Cartesian Coordinate Frame 
in 3D 

To specify the location of a point in space, we need 

three coordinates (x, y, z), where 

coordinates x and y specify locations in a plane, and 

coordinate z gives a vertical position above or below the 

plane. Three-dimensional space has three orthogonal 

directions, so we need not two but three unit vectors to 

define a three-dimensional coordinate system. In the 

Cartesian coordinate system, the first two unit vectors 

are the unit vector of the x-axis i and the unit vector of 

the y-axis j. The third unit vector k is the direction of 

the z-axis, as can be seen below. The order in which the 

axes are labeled, which is the order in which the three 

unit vectors appear, is important because it defines the 

orientation of the coordinate system. The order x–y–z, 

which is equivalent to the order i^" role="presentation" 

style="font-family: proxima-nova, sans-serif; padding: 

1px 0px; margin: 0px; font-size: 17.44px; vertical-align: 
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baseline; background: transparent; border: 0px; line-

height: 0; text-indent: 0px; text-align: left; text-

transform: none; font-style: normal; font-weight: 

normal; letter-spacing: normal; float: none; direction: 

ltr; max-width: none; max-height: none; min-width: 

0px; min-height: 0px;">i-j-k, defines the standard right-

handed coordinate system (positive orientation). 

In three-dimensional space, vector [latex]\vec 

A[/latex] A→" role="presentation" style="font-family: 

proxima-nova, sans-serif; padding: 1px 0px; margin: 0px; 

font-size: 17.44px; vertical-align: baseline; background: 

transparent; border: 0px; line-height: 0; text-indent: 

0px; text-align: left; text-transform: none; font-style: 
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normal; font-weight: normal; letter-spacing: normal; 

float: none; direction: ltr; max-width: none; max-height: 

none; min-width: 0px; min-height: 0px;">  has three 

vector components: the x-component [latex]\vec A_x = 

A_x\underline{\hat{i}}[/latex] , which is the part of 

vector[latex]\vec A[/latex] A→" role="presentation" 

style="font-family: proxima-nova, sans-serif; padding: 

1px 0px; margin: 0px; font-size: 17.44px; vertical-align: 

baseline; background: transparent; border: 0px; line-

height: 0; text-indent: 0px; text-align: left; text-

transform: none; font-style: normal; font-weight: 

normal; letter-spacing: normal; float: none; direction: 

ltr; max-width: none; max-height: none; min-width: 

0px; min-height: 0px;">  along the x-axis; 

the y-component [latex]\vec A_y = A_y\

underline{\hat{ j}}[/latex] , which is the part of 

[latex]\vec A[/latex] A→" role="presentation" 

style="font-family: proxima-nova, sans-serif; padding: 

1px 0px; margin: 0px; font-size: 17.44px; vertical-align: 

baseline; background: transparent; border: 0px; line-

height: 0; text-indent: 0px; text-align: left; text-

transform: none; font-style: normal; font-weight: 

normal; letter-spacing: normal; float: none; direction: 

ltr; max-width: none; max-height: none; min-width: 

0px; min-height: 0px;">  along the y-axis; and 

the z-component [latex]\vec A_z = A_z 

\underline{\hat{k}}[/latex], which is the part of the 

vector along the z-axis. A vector in three-dimensional 

space is the vector sum of its three vector components: 
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[latex]\vec A= A_x\underline{\hat{i}}+A_y\

underline{\hat{ j}}+A_z\underline{\hat{k}}[/latex] 

If we know the coordinates of its origin b(xb, yb, 

zb) and of its end e(xe, ye, ze) its scalar components are 

obtained by taking their differences, and 

the z-component is given by: 

[latex]A_z=z_e-z_b[/latex] 

Magnitude A is obtained by the following equation: 

[latex]A=\sqrt 

{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}[/latex] 

This expression for the vector magnitude comes from 

applying the Pythagorean theorem twice. As seen in the 

figure below, the diagonal in the x-y plane has length 

[latex]\sqrt{A_{x}^{2}+A_{y}^{2}}[/latex]  and its 

square adds to the square Az
2 to give A2 . Note that 

when the z-component is zero, the vector lies entirely in 

the x-y plane and its description is reduced to two 

dimensions. 

46  |  Statics



Source: University Physics Volume 1, OpenStax CNX, 

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/2-2-coordinate-systems-

and-components-of-a-vector/ 

The Cartesian coordinate frame is a right-orthogonal system. This 

will matter when we start looking at the right-hand rule in section 

3.1. What is means is that when you draw two of the directions (say 

x and y), then z must go either up or down. We’ll get into that more, 

later. 

 

Key Takeaways 
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Basically: The Cartesian coordinate frame gives us a way 

to communicate the location of a point in space. In 2-d we 

use [x, y] and in 3-d we also include z: [x, y, z]. 

Application: If I am trying to walk across the room, I can 

walk in a straight line for 5 steps, or I can take 3 steps to 

the right and 4 steps ahead. If I wanted to describe the 

position of where I went in the Cartesian coordinate frame, 

it would be [3, 4] assuming x is to the right and y is straight 

ahead. 

Looking ahead: This will connect with everything we do in 

this class, especially with cross-products (1.5), torque (1.6), 

and equilibrium equations (everywhere). 
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1.3 Vectors 

1.3.1 Vector Components 

Some fun facts about vectors: 

• The vector is denoted with a line on top or bottom: [latex]\vec 

A[/latex] or A. 

• There are two parts of a vector ([latex]\vec A[/latex]): 

magnitude (A or |A|) and direction 

([latex]\underline{\hat{a}}[/latex]): [latex]\vec A = 

|\underline{A}|*\underline{\hat{a}}[/latex] 

• In 2-dimensions, there are two components: x and y. In 3-d, 

there are three components: x, y, and z. 

• Vectors can be denoted using Cartesian form or brackets: 

[latex]\vec A=A_x\underline{\hat{i}}+A_y\

underline{\hat{ j}}+A_z\underline{\hat{k}}[/latex] or using the 

bracket form horizontally: [latex]\vec A=[ A_x, A_y, 

A_z[/latex] ] or vertically:  [latex]\vec 

A=\begin{bmatrix}A_x\\A_y,\\A_z \end{bmatrix}[/latex] 

• The magnitude (A or |A|) is calculated using the Pythagorean 

theorem for each component in 2d: [latex]A = 

\sqrt{{A}_{x}^{2}+{A}_{y}^{2}}[/latex] and 3d: [latex]A = 

\sqrt{{A}_{x}^{2}+{A}_{y}^{2}+{A}_{z}^{2}}[/latex] 

• The unit vector ([latex]\underline{\hat{u}}[/latex]) represents 

the direction in cartesian form 

[latex]\underline{\hat{u}}=\underline{\hat{i}}+\underline{\ha

t{ j}}+\underline{\hat{k}}[/latex] or using bracket form: [ 

[latex]\underline{\hat{i}}, \underline{\hat{ j}}, 

\underline{\hat{k}}[/latex] ]. 

• The magnitude of the unit vector is 1 (denoted by the ‘hat’ on 

top) and it is unit-less: [latex]|\underline{\hat{u}} |= 
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\sqrt{{\underline{\hat{i}}}^{2}+{\underline{\hat{ j}}}^{2}+{\un

derline{\hat{k}}}^{2}} = 1[/latex] 

• The unit vector can be calculated from the magnitude and 

vector: [latex]\underline{\hat{a}} =\vec A/|A|[/latex] 

 

In 2d & 3d: 
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Source: University Physics Volume 1, OpenStax CNX, 

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/2-2-coordinate-systems-

and-components-of-a-vector/ 
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Source: Introductory Physics, Ryan 
Martin et al., 
https://openlibrary.ecampusontario.ca
/catalogue/
item/?id=4c3c2c75-0029-4c9e-967f-41
f178bebbbb p814 

1.3.2 Componentizing a Vector 

In 2d: 

To find the components of a 

vector (A) in 2 dimensions (the x 

and y portions Ax and Ay), use 

SOH CAH TOA: 

 

[latex]\vec A=A_x\

underline{\hat{i}}+A_y\

underline{\hat{ j}}[/latex] 

Ax = |A| cos(Θ) 

Ay = |A| sin(Θ) 

|A|2 = Ax
2 + Ay

2  (magnitude) 

tan(Θ) = Ax / Ay    (direction) 

In 3d: 

[latex]\vec A=A_x\underline{\hat{i}}+A_y\

underline{\hat{ j}}+A_z\underline{\hat{k}}[/latex] 

|A|2 = Ax
2 + Ay

2+ Az
2   (magnitude) 

[latex]\begin{aligned} &\hat{a}=\frac{\vec A}{|\vec A|} 

\end{aligned}=\frac{{A}_{x} \underline{\hat{\imath}}+A_{y} 

\underline{\hat{\jmath}}+{A}_{z} 

\underline{\hat{k}}}{\sqrt{\left({A}_{x}\right)^{2}+\left({A}_{y}\ri

ght)^{2}+\left({A}_{z}\right)^{2}}}[/latex] 

1.3.3 Position Vector 

The position vector describes the position of an object or person 

from a predefined origin (a starting point, absolute 0, or some other 

point), for example the point where A in the above image is point at. 
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A is the position vector. You can add individual position vectors to 

find the total position traveled (c = a + b), for example if someone 

walks from one point on campus to another, they would rarely walk 

in one straight line like c. In the image below, imagine that there 

is a building in the square near where a and b meet, so the person 

couldn’t take c but had to walk around. The total distance traveled 

is |a| + |b|, not |c| (because |c| ≠ |a| + |b|). 

Source: Introductory Physics, Ryan Martin et al., 
https://openlibrary.ecampusontario.ca/catalogue/
item/?id=4c3c2c75-0029-4c9e-967f-41f178bebbbb page 821 

Subtraction works the same way, but instead of going from tail to 

head of the arrow, the reverse direction is taken, from head to tail. 

For example, a = c – b, follow c from tail to head, then go in the 

reverse direction of b from head to tail, and you end up at a. 

1.3.4 Vector Math 

Here’s more official language to describe vectors: 
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Vectors can be added together and multiplied by 

scalars. Vector addition is associative and commutative, 

and vector multiplication by a sum of scalars is 

distributive. Also, scalar multiplication by a sum of 

vectors is distributive: 

[latex]\alpha(\vec A+\vec B)=\alpha\vec A +\alpha\

vec B[/latex] 

In this equation, α is any number (a scalar). For 

example, a vector antiparallel to vector [latex]\vec 

A=A_x\hat{i}+A_y\hat{ j}+A_z\hat{k}[/latex] can be 

expressed simply by multiplying [latex]\vec A[/latex] by 

the scalar α=1: 

[latex]-\vec A=-A_x\hat{i}-A_y\hat{ j}-A_z\

hat{k}[/latex] 

The generalization of the number zero to vector 

algebra is called the null vector, denoted by [latex]\vec 

0[/latex]. All components of the null vector are zero 

[latex]\vec 0 = 0 \hat{i} + 0 \hat{ j} + 0 \hat{k}[/latex] , 

so the null vector has no length and no direction. 

Two vectors [latex]\vec A[/latex] and [latex]\vec 

B[/latex] are equal vectors if and only if their difference 

is the null vector: 

[latex]\vec 0=\vec A - \vec B=(A_x\

underline{\hat{i}}) + A_y\underline{\hat{ j}} + A_z\

underline{\hat{k}}) - (B_x\underline{\hat{i}} + B_y\

underline{\hat{ j}} + B_z\underline{\hat{k}})[/latex] 

[latex]\space=(A_x - B_x)\underline{\hat{i}} + (A_y - 

B_y)\underline{\hat{ j}} + (A_z - 

B_z)\underline{\hat{k}}[/latex] 
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This vector equation means we must have 

simultaneously [latex]A_x-B_x=0[/latex], [latex]A_y-

B_y=0[/latex], and [latex]A_z-B_z=0[/latex]. Hence, 

we can write [latex]\vec A=\vec B[/latex] if and only if 

the corresponding components of vectors [latex]\vec 

A[/latex] and [latex]\vec B[/latex] are equal: 

[latex]\vec A =\vec B[/latex]   if  

[latex]\begin{bmatrix}A_x=B_x\\A_y=B_y\\A_z=B_z

\end{bmatrix}[/latex] 

Two vectors are equal when their corresponding 

scalar components are equal. 

Resolving vectors into their scalar components (i.e., 

finding their scalar components) and expressing them 

analytically in vector component form allows us to use 

vector algebra to find sums or differences of many 

vectors analytically (i.e., using graphical methods). For 

example, to find the resultant of two vectors [latex]\vec 

A[/latex] and [latex]\vec B[/latex], we simply add them 

component by component, as follows: 

[latex]\vec R=\vec A + \vec B=(A_x\

underline{\hat{i}}+A_y\underline{\hat{ j}}+A_z\

underline{\hat{k}})+(B_x\underline{\hat{i}}+B_y\

underline{\hat{ j}}+B_z\

underline{\hat{k}})=(A_x+B_x)\underline{\hat{i}}+(A_y

+B_y)\underline{\hat{ j}}+(A_z+B_z)\underline{\hat{k}}

[/latex] 

In this way, scalar components of the resultant vector: 

[latex]\vec R=(R_x\underline{\hat{i}}+R_y\

underline{\hat{ j}}+R_z\underline{\hat{k}})[/latex]. 
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[latex]\begin{matrix}R_x = A_x+B_x\\R_y = 

A_y+B_y\\R_z = A_z+B_z\end{matrix}[/latex] 

Source: University Physics Volume 1, OpenStax CNX, 

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/2-3-algebra-of-vectors/ 

Key Takeaways 

Basically: Vectors help describe position, forces, and 

quantities. Vectors use components, magnitude, and 

direction (unit vector) to do so. 

Application: A hammock hangs at an angle from the wall. 

When a person is in the hammock, they are pulling on the 

wall with a force at an angle. This force vector could be 
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componentized into x and y, using the angle and the weight 

of the person to calculate it. 

Looking ahead: The next place vectors will appear is in 

Moments in 1.6. 
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1.4 Dot Product 

A dot product produces a single number to describe the product 

of two vectors. If you haven’t taken linear algebra yet, this may 

be a new concept. This is a form of multiplication that is used to 

calculate work, unit vectors, and to find the angle between two 

vectors. 

[latex]\vec A\cdot \vec B=|\vec A||\vec B|\cos\theta[/latex] 

 

A vector can be multiplied by another vector but may 

not be divided by another vector. There are two kinds of 

products of vectors used broadly in physics and 

engineering. One kind of multiplication is a scalar 

multiplication of two vectors. Taking a scalar product of 

two vectors results in a number (a scalar), as its name 

indicates. Scalar products are used to define work and 

energy relations. For example, the work that a force (a 

vector) performs on an object while causing its 

displacement (a vector) is defined as a scalar product of 

the force vector with the displacement vector. A quite 

different kind of multiplication is a vector multiplication 

of vectors. Taking a vector product of two vectors 

returns as a result a vector, as its name suggests. Vector 

products are used to define other derived vector 

quantities. For example, in describing rotations, a vector 

quantity called torque is defined as a vector product of 

an applied force (a vector) and its distance from pivot to 

force (a vector). It is important to distinguish between 

these two kinds of vector multiplications because the 
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scalar product is a scalar quantity and a vector product 

is a vector quantity. 

Scalar multiplication of two vectors yields a scalar 

product. 

Dot Product 

The scalar product [latex]\vec A\cdot 

\vec B[/latex] of two vectors [latex]\vec A 

\text{ and } \vec B[/latex] is a number 

defined by the equation: 

[latex]\vec A\cdot \vec B=|\vec A||\vec B| 

\cos \phi[/latex] 

where ϕ is the angle between the vectors. 

The scalar product is also called the dot 
product because of the dot notation that 

indicates it. 

When the vectors are given in their vector component 

forms: 

$$\vec A=A_x\underline{\hat{i}}+A_y\

underline{\hat{ j}}+A_z\underline{\hat{k}}\text{  and 

}\vec B=B_x\underline{\hat{i}}+B_y\

underline{\hat{ j}}+B_z\underline{\hat{k}}$$ 

we can compute their scalar product as follows: 

$$\vec A\cdot\vec B=(A_x\underline{\hat{i}}+A_y\
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underline{\hat{ j}}+A_z\underline{\hat{k}})\cdot(B_x\

underline{\hat{i}}+B_y\underline{\hat{ j}}+B_z\

underline{\hat{k}})\\=A_xB_x\

underline{\hat{i}}\cdot\underline{\hat{i}}+A_xB_y\

underline{\hat{i}}\cdot\underline{\hat{ j}}+A_xB_z\

underline{\hat{i}}\cdot\

underline{\hat{k}}\\+A_yB_x\

underline{\hat{ j}}\cdot\underline{\hat{i}}+A_yB_y\

underline{\hat{ j}}\cdot\underline{\hat{ j}}+A_yB_z\

underline{\hat{ j}}\cdot\

underline{\hat{k}}\\+A_zB_x\

underline{\hat{k}}\cdot\underline{\hat{i}}+A_zB_y\

underline{\hat{k}}\cdot\underline{\hat{ j}}+A_zB_z\

underline{\hat{k}}\cdot\underline{\hat{k}}$$ 

Since scalar products of two different unit vectors of 

axes give zero, and scalar products of unit vectors with 

themselves give one, there are only three nonzero terms 

in this expression. Thus, the scalar product simplifies to: 

[latex]\vec A\cdot\vec 

B=A_xB_x+A_yB_y+A_zB_z[/latex] 

We can use the equation below to find the angle 

between two vectors. When we divide [latex]\vec A\

cdot\vec B=|\vec A||\vec B| \cos\phi[/latex] by 

[latex]|\vec A || \vec B|[/latex] , we obtain the equation 

for cos(ϕ), into which we substitute the equation from 

above: 

$$\cos\phi=\frac{\vec A\cdot\vec B}{|\vec A||\vec 

B| }=\frac{A_xB_x+A_yB_y+A_zB_z}{|\vec A||\vec B| 

}$$ 

Angle cosϕ" role="presentation">ϕ between vectors 
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[latex]\vec A \text{ and }\vec B[/latex] is obtained by 

taking the inverse cosine of the expression above. 

 

Source: University Physics Volume 1, OpenStax CNX, 

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/2-4-products-of-vectors 

(many examples at this page). 

 

But what IS it? 

The dot product is the 

component of vector A along B ( |A| cos Θ ) times the magnitude (size 

of B). OR, it’s the component of B on A times the magnitude of A. 

Visually this can be seen in the figure.1 

There is a nice mathematical proof on page 169 of Calculus-Based 

Physics. 

One neat thing about the dot product is that A • B = B • A 

An example of a dot product is in a solar panel. To maximize 

1. Source: https://en.wikipedia.org/wiki/

Dot_product#/media/File:Dot_Product.svg 
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efficiency, the rays coming from the sun should be perpendicular 

to the panels, that is, straight on. You could use the dot product 

between a vector of the sun’s rays (yellow in the image below) and 

the unit vector perpendicular to the surface (green in the image) to 

calculate what portion of a ray that comes in at an angle produces 

energy. 

 

Arrows added to photo from Source: https://www.pxfuel.com/en/
free-photo-ouswv 

Key Takeaways 

Basically: Dot product is a method to find a number that 

is a product of two vectors. 
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Application: Two ropes attached to a sign are being pulled 

in different directions. To find the angle between them, use 

the dot product of the two vectors. 

Looking ahead: We will use the dot product in Section 2.3 

on particle equilibrium equations (and more in dynamics 

next semester). 
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1.5 Cross Products 

This is a second way to calculate the product of two vectors. It 

creates a third vector that is perpendicular to the plane made from 

the two vectors as shown in the figure 1. 

a

a×b

b×a

ϴ
||a|| ||b||n sin ϴ

b

The black 

arrow is perpendicular to the grey plane made from blue and red 

vectors). This is how you will find the amount of torque created from 

a force, which we will do many times. Also, unlike the dot product, a 

x b  is a different direction than b x a. 

$$ \vec A\times\vec B=\begin{bmatrix} 

\underline{\hat{i}} & \underline{\hat{ j}} & \underline{\hat{k}} \\ 

A_x & A_y & A_z \\ 

B_x & B_y & B_z 

\end{bmatrix} $$ 

 

1. https://commons.wikimedia.org/wiki/File:Cross-

product-with-area.svg 
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[latex]\vec {\textbf{A}}\times\vec{\textbf{B}}=(A_yB_z-

A_zB_y)\underline{\hat{\textbf{i}}}+(A_zB_x-

A_xB_z)\underline{\hat{\textbf{ j}}}+(A_xB_y-A_yB_x)\underline

{\hat{\textbf{k}}}[/latex] 

[latex]|\vec {\textbf{A}}\times\vec {\textbf{B}}|=|\vec A||\vec 

B|\sin\theta[/latex] 

The vector product of two vectors [latex]\vec A 

\text{  and  }\vec B[/latex] is denoted by [latex]\vec A 

\text{ x }\vec B[/latex] and is often referred to as 

a cross product. The vector product is a vector that has 

its direction perpendicular to both vectors [latex]\vec A 

\text{  and  }\vec B[/latex]. In other words, vector 

[latex]\vec A \text{ x }\vec B[/latex] is perpendicular to 

the plane that contains vectors [latex]\vec A \text{  and 

}\vec B[/latex]. 

Source: University Physics Volume 1, OpenStax CNX, 

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/2-4-products-of-vectors/ 

Unit vectors allow for a straightforward calculation of 

the cross product of two vectors under even the most 

general circumstances, e.g. circumstances in which each 

of the vectors is pointing in an arbitrary direction in a 

three-dimensional space. To take advantage of the 

method, we need to know the cross product of the 

Cartesian coordinate axis unit vectors i, j, and k with 
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each other. First off, we should note that any vector 

crossed into itself gives zero. This is evident from the 

equation: 

[latex]|\vec A\times\vec B|=|\vec A||\vec B|\sin\

theta[/latex]. 

because if A and B are in the same direction, then θ = 

0°, and since sin 0° = 0, we have [latex]|\vec A\times\

vec B|=0[/latex]. Regarding the unit vectors, this means 

that: 

$$\underline{\hat{i}}\times\

underline{\hat{i}}=0\\\underline{\hat{ j}}\times\

underline{\hat{ j}}=0\\\underline{\hat{k}}\times\

underline{\hat{k}}=0$$ 

 

Next we note that the magnitude of the cross product 

of two vectors that are perpendicular to each other is 

just the ordinary product of the magnitudes of the 

vectors. This is also evident from the equation: 

$$|\vec {A}\times\vec{B}|=|\vec A||\vec B|\sin\

theta$$ 

because if [latex]\vec A[/latex] is perpendicular to 

[latex]\vec B[/latex] then θ = 90° and sin90° = 1 so: 

$$|\vec A\times\vec B|=|\vec A||\vec B|$$ 

Now if A and B are unit vectors, then their magnitudes 

are both 1, so, the product of their magnitudes is also 1. 

Furthermore, the unit vectors i, j, and k are all 

perpendicular to each other so the magnitude of the 
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cross product of any one of them with any other one of 

them is the product of the two magnitudes, that is, 1. 

Now how about the direction? Let’s use the right hand 

rule to get the direction of i×j: 

[To find the direction, we use the right-hand rule which 

we will cover more in section 3.1. Here is an overview]. 

With the fingers of the right hand pointing directly away 

from the right elbow, and in the same direction as i, (the 

first vector in “[latex]\underline{\hat{i}}\times\

underline{\hat{ j}}[/latex]”) to make it so that if one 

were to close the fingers, they would point in the same 

direction as [latex]\underline{\hat{ j}}[/latex], the palm 

must be facing in the +y direction. That being the case, 

the extended thumb must be pointing in the +z 
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direction. Putting the magnitude (the magnitude of each 

unit vector is 1) and direction (+z) information together 

we see that: 

• [latex]\underline{\hat{i}}\times\

underline{\hat{ j}}=\underline{\hat{k}}[/latex] 

• [latex]\underline{\hat{ j}}\times\

underline{\hat{k}}=\underline{\hat{i}}[/latex] 

• [latex]\underline{\hat{k}}\times\

underline{\hat{i}}=\underline{\hat{ j}}[/latex] 

• [latex]\underline{\hat{ j}}\times\

underline{\hat{i}}=-\underline{\hat{k}}[/latex] 

• [latex]\underline{\hat{k}}\times\

underline{\hat{ j}}=-\underline{\hat{i}}[/latex] 

• [latex]\underline{\hat{i}}\times\

underline{\hat{k}}=-\underline{\hat{ j}}[/latex] 

One way of remembering this is to write 

[latex]\underline{\hat{i}},\underline{\hat{ j}},\underlin

e{\hat{k}}[/latex] twice in succession: 

[latex]\underline{\hat{\textbf{i}}},\underline{\hat{\t

extbf{ j}}},\underline{\hat{\textbf{k}}},\underline{\hat{

\textbf{i}}},\underline{\hat{\textbf{ j}}},\underline{\hat

{\textbf{k}}}[/latex] 

Then, crossing any one of the first three vectors into 

the vector immediately to its right yields the next vector 

to the right. But crossing any one of the last three 

vectors into the vector immediately to its left yields the 

negative of the next vector to the left (left-to-right “+“, 

but right-to-left “−“). 

Now we’re ready to look at the general case. Any 
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vector  [latex]\vec A[/latex]  can be expressed in terms 

of unit vectors: 

$$\vec{\textbf{A}}=A_x\hat{\underline{i}}+A_y\

hat{\underline{ j}}+A_z\hat{\underline{k}}$$ 

Doing the same for a vector  [latex]\vec B[/latex] 

then allows us to write the cross product as: 

$$\vec{\textbf{A}}\times\vec{\textbf{B}}=(A_x\

hat{\underline{i}}+A_y\hat{\underline{ j}}+A_z\

hat{\underline{k}})\times(B_x\hat{\underline{i}}+B_y\

hat{\underline{ j}}+B_z\hat{\underline{k}})$$ 

Using the distributive rule for multiplication we can 

write this as: 

$$\begin{aligned}\vec{\textbf{A}}\times\

vec{\textbf{B}}=&A_x\hat{\underline{i}}\times(B_x\

hat{\underline{i}}+B_y\hat{\underline{ j}}+B_z\

hat{\underline{k}})+\\&A_y\

hat{\underline{ j}}\times(B_x\hat{\underline{i}}+B_y\

hat{\underline{ j}}+B_z\hat{\underline{k}})+\\&A_z\

hat{\underline{k}}\times(B_x\hat{\underline{i}}+B_y\

hat{\underline{ j}}+B_z\

hat{\underline{k}})\end{aligned}$$ 

$$\begin{aligned}\vec{\textbf{A}}\times\

vec{\textbf{B}}=&A_x\hat{\underline{i}}\times B_x\

hat{\underline{i}}+A_x\hat{\underline{i}}\times B_y\

hat{\underline{ j}}+A_x\hat{\underline{i}}\times  B_z\

hat{\underline{k}}+\\&A_y\hat{\underline{ j}}\times 

B_x\hat{\underline{i}}+A_y\hat{\underline{ j}}\times 

B_y\hat{\underline{ j}}+A_y\hat{\underline{ j}}\times 

B_z\hat{\underline{k}}+\\&A_z\

hat{\underline{k}}\times B_x\hat{\underline{i}}+A_z\
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hat{\underline{k}}\times B_y\hat{\underline{ j}}+A_z\

hat{\underline{k}}\times B_z\

hat{\underline{k}}\end{aligned}$$ 

Using, in each term, the commutative rule and the 

associative rule for multiplication we can write this as: 

$$\begin{aligned}\vec{\textbf{A}}\times\

vec{\textbf{B}}=&A_xB_x(\hat{\underline{i}}\times\

hat{\underline{i}})+A_xB_y(\hat{\underline{i}}\times\

hat{\underline{ j}})+A_xB_z(\hat{\underline{i}}\times\

hat{\underline{k}})+\\&A_yB_x(\hat{\underline{ j}}\ti

mes\

hat{\underline{i}})+A_yB_y(\hat{\underline{ j}}\times\

hat{\underline{ j}})+A_yB_z(\hat{\underline{ j}}\times\

hat{\underline{k}})+\\&A_zB_x(\hat{\underline{k}}\ti

mes\

hat{\underline{i}})+A_zB_y(\hat{\underline{k}}\times\

hat{\underline{ j}})+A_zB_z(\hat{\underline{k}}\times\

hat{\underline{k}})\end{aligned}$$ 

Now we evaluate the cross product that appears in 

each term: 

$$\begin{aligned}\vec A\times\vec 

B=&A_xB_x(0)+A_xB_y(\underline{\hat{k}})+A_xB_z(-

\underline{\hat{ j}})+\\&A_yB_x(-

\underline{\hat{k}})+A_yB_y(0)+A_yB_z(\underline{\h

at{i}})+\\&A_zB_x(\underline{\hat{ j}})+A_zB_y(-

\underline{\hat{i}})+A_zB_z(0)\end{aligned}$$ 

Eliminating the zero terms and grouping the terms 

with i together, the terms with j together, and the terms 

with k together yields: 

$$\begin{aligned}\vec A\times\vec 
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B=&A_yB_z(\underline{\hat{i}})+A_zB_y(-

\underline{\hat{i}})+\\&A_zB_x(\underline{\hat{ j}})+A

_xB_z(-

\underline{\hat{ j}})+\\&A_xB_y(\underline{\hat{k}})+

A_yB_x(-\underline{\hat{k}})\end{aligned}$$ 

Factoring out the unit vectors yields: 

$$\begin{aligned}\vec A\times\vec B=&(A_yB_z-

A_zB_y)\underline{\hat{i}}+\\&(A_zB_x-

A_xB_z)\underline{\hat{ j}}+\\&(A_xB_y-

A_yB_x)\underline{\hat{k}}\end{aligned}$$ 

which can be written on one line as: 

$$\vec A\times\vec B=(A_yB_z-

A_zB_y)\underline{\hat{i}}+(A_zB_x-

A_xB_z)\underline{\hat{ j}}+(A_xB_y-

A_yB_x)\underline{\hat{k}}$$ 

This is our end result. We can arrive at this result 

much more quickly if we borrow a tool from that branch 

of mathematics known as linear algebra (the 

mathematics of matrices). 

We form the 3×3 matrix: 

$$ \begin{bmatrix} 

\underline{\hat{i}} & \underline{\hat{ j}} & 

\underline{\hat{k}} \\ 

A_x & A_y & A_z \\ 

B_x & B_y & B_z 

\end{bmatrix} $$ 

by writing i, j, k as the first row, then the components 

of the first vector that appears in the cross product as 

the second row, and finally the components of the 

1.5 Cross Products  |  71



second vector that appears in the cross product as the 

last row. It turns out that the cross product is equal to 

the determinant of that matrix. We use absolute value 

signs on the entire matrix to signify “the determinant of 

the matrix.” So we have: 

$$ \vec A\times\vec B=\begin{bmatrix} 

\underline{\hat{i}} & \underline{\hat{ j}} & 

\underline{\hat{k}} \\ 

A_x & A_y & A_z \\ 

B_x & B_y & B_z 

\end{bmatrix} $$ 

 

To take the determinant of a 3×3 matrix you work 

your way across the top row. For each element in that 

row you take the product of the elements along the 

diagonal that extends down and to the right, minus the 

product of the elements down and to the left; and you 

add the three results (one result for each element in the 

top row) together. If there are no elements down and to 

the appropriate side, you move over to the other side of 

the matrix (see below) to complete the diagonal. 

For the first element of the first row, the i, take the 

product down and to the right, 
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( this yields iAyBz) minus the product down and to the 

left 

( the product down-and-to-the-left is iAzBy). 

For the first element in the first row, we thus have: 

[latex]\underline{\hat{i}}[/latex]AyBz − 

[latex]\underline{\hat{i}}[/latex]AzBy which can be 

written as: (AyBz − 

AzBy)[latex]\underline{\hat{i}}[/latex]. Repeating the 

process for the second and third elements in the first 

row (the j and the k) we get (AzBx − 

AxBz)[latex]\underline{\hat{ j}}[/latex] and (AxBy − 

AyBx)[latex]\underline{\hat{k}}[/latex] respectively. 

Adding the three results, to form the determinant of the 

matrix results in: 

$$\vec A\times\vec B=(A_yB_z-

A_zB_y)\underline{\hat{i}}+(A_zB_x-

A_xB_z)\underline{\hat{ j}}+(A_xB_y-

A_yB_x)\underline{\hat{k}}$$ 

as we found before, “the hard way.” Below the diagram 

shows the direction of each part of the cross product: 
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Source: Calculus Based Physics, Jeffrey W. Schnick, 

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 page 

136–141 

Key Takeaways 

Basically: Cross product is a method to find a 
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vector that is a product of two vectors, perpindular 

to the plane created from the two vectors. 

Application: While bicycling, the force of my foot 

pushing on the pedal produces the most rotation 

when the force is 90 dgrees (perpindicular) from 

the surface of the pedal. The pedals themselves 

rotate so I can change the angle I am pushing with, 

otherwise when the pedal is at the bottom, it would 

be very difficult to produce forward motion. 

Looking ahead: In the next section, 1.6 on Torque, 

we will use the cross product to find the moment 

produced from forces. 

1.5 Cross Products  |  75



1.6 Torque/Moment 

1.6.1 Moments 

Moments are created by a force acting a distance from the center of 

rotation. There are three ways to calculate moments: scalar, vector, 

and using the right hand rule. The first two methods will be 

presented in this section and the third way will be discussed in 

section 3.1.3 on the right-hand rule. 

 

A moment (sometimes called a torque) is defined as 

the “tendency of a force to rotate a body”. Where forces 

cause linear accelerations, moments cause angular 
accelerations. In this way moments, can be thought of 

as twisting forces. 

The Vector Representation of a Moment: 
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Moments, like forces, can be represented as vectors 

and have a magnitude, a direction, and a “point of 

application”. For moments however a better name for 

the point of application is the axis of rotation. This will 

be the point or axis about which we will determine all 

the moments. 

 

Magnitude: 

The magnitude of a moment is the degree to which 

the moment will cause angular acceleration in the body 

it is acting on. It is represented by a scalar (a single 

number). The magnitude of the moment can be thought 

of as the strength of the twisting force exerted on the 

body. When a moment is represented as a vector, the 

magnitude of the moment is usually explicitly labeled. 

though the length of the moment vector also often 

corresponds to the relative magnitude of the moment. 

The magnitude of the moment is measured in units of 

force times distance. The standard metric units for the 

magnitude of moments are newton meters, and the 

standard English units for a moment are foot pounds. 

[latex]M= F\ast d\\Metric: N\ast m\\English: lb 

\ast ft[/latex] . 

 

Direction: 

In a two dimensional problem, the direction can be 

thought of as a scalar quantity corresponding to the 

direction of rotation the moment would cause. A 

moment that would cause a counter-clockwise rotation 
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is a positive moment and a moment that would cause a 

clockwise rotation is a negative moment. 

In a three dimensional problem however, a body can 

rotate about an axis in any direction. If this is the case 

we need a vector to represent the direction of the 

moment. The direction of the moment vector will line 

up with the axis of rotation that moment would cause, 

but to determine which of the two directions we can 

use along that axis we have available we use the right 

hand rule. To use the right hand rule, align your right 

hand as shown so that your thumb lines up with the axis 

of rotation for the moment and your curled fingers 

point in the direction of rotation for your moment. If 

you do this, your thumb will be pointing in the direction 

of the moment vector. 

If we look back to two dimensional problems, all 

rotations occur about an axis pointing directly into or 

out of the page (the z axis). Using the right hand rule, 

counter-clockwise rotations are represented by a vector 
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in the positive z direction and clockwise rotations are 

represented by a vector in the negative z direction. 

 

Axis of Rotation: 

In engineering statics problems we can choose any 

point/axis as the axis of rotation. The choice of this 

point will affect the magnitude and direction of the 

resulting moment however, and the moment is only 

valid about that point. 

Though we can take the moment about any point in a 

statics problem, if we are adding together the moments 

from multiple forces, all the moments must be taken 

about a common axis of rotation. Moments taken about 

different points cannot be added together to find a ‘net 

moment’ 

Additionally, if we move into the subject of dynamics, 

where bodies are moving, we will want to relate 

moments to angular accelerations. For this to work, we 

will need to take the moments either about a single 

point that does not move (such as the hinge on a door) 
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or we will need to take the moments about the center of 

mass of the body. Summing moments about other axes 

of rotation will not result in valid calculations. 

 

Calculating Moments: 

To calculate the moment that a force exerts on a body, 

we will have two main options: scalar 
methods and vector methods. Scalar methods are 

generally faster for two dimensional problems where a 

body can only rotate clockwise or counter-clockwise, 

while vector methods are generally faster for three 

dimensional problems where the axis of rotation is more 

complex. 

Given any point on an extended body, if there is a 

force acting on that body that does not travel through 

that point, then that force will cause a moment about 

that point. As discussed on the moments page, a 

moment is a force’s tendency to cause rotation. 

Source: Engineering Mechanics, Jacob Moore et al., 

http://mechanicsmap.psu.edu/websites/

1_mechanics_basics/1-5_moments/moments.html 
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1.6.2 Scalar Method in 2 Dimensions 

In discussing how to calculate the moment of a force 

about a point via scalar quantities, we will begin with 

the example of a force on a simple lever as shown below. 

In this simple lever there is a force on the end of the 

lever, distance d away from the center of rotation for 

the lever (point A) where the force has a magnitude F. 

When using scalar quantities, the magnitude of the 

moment will be equal to the perpendicular distance 

between the line of action of the force and the point we 

are taking the moment about. 

$$M=F\ast d$$ 

To determine the sign of the moment, we determine 

what type of rotation the force would cause. In this case 

we can see that the force would cause the lever to 

rotate counterclockwise about point A. 

Counterclockwise rotations are caused by positive 
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moments while clockwise rotations are caused by 

negative moments. 

Another important factor to remember is that the 

value d is the perpendicular distance from the force to 

the point we are taking the moment about. We could 

measure the distance from point A to the head of the 

force vector, or the tail of the force vector, or really any 

point along the line of action of force F. The distance we 

need to use for the scalar moment calculation however 

is the shortest distance between the point and the line 

of action of the force. This will always be a line 

perpendicular to the line of action of the force, going to 

the point we are taking the moment about. 
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Source: Engineering Mechanics, Jacob Moore et al., 

http://mechanicsmap.psu.edu/websites/

3_equilibrium_rigid_body/3-1_moment_scalar/

moment_scalar.html 

If the position vector and force aren’t at exactly 90 degrees, the 

equation T = |r| |F| sin Θ can be helpful and still produce a scalar 

number for moment or torque. This is good if we had really simple 

systems, such as opening a door or spinning a top. What happens 

when you have a rotating door and a few people are trying to go 

through it? Or a force that isn’t exactly along two axes? To solve 

that, we’ll use vectors as shown in the next section. 

1.6.3 Vector Method in 3 Dimensions 

An alternative to calculating the moment via scalar 

quantities is to use the vector method or cross product 
method. For simple two dimensional problems, using 

scalar quantities is usually easier, but for more complex 

problems, using the cross product method is usually 

easier. The cross product method for calculating 

moments says that the moment vector of a force about a 

point will be equal to the cross product of a 
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vector r from the point to anywhere on the line of 

action of the force and the force vector itself. 

$$\vec M=\vec r\times\vec F$$ 

A big advantage of this method is that r does not have 

to be the shortest distance between the point and the 

line of action, it goes from the point to any part of the 

line of action. For any problem, there are many 

possible r vectors, though because of the way the cross 

product works, they should all result in the same 

moment vector in the end. 

It is important to note here that all quantities 

84  |  Statics



(r, F and M) are vectors. Before you can solve for the 

cross product, you will need to write out r and F in 

vector component form. Also, even for two dimensional 

problems, you will need to write out all three 

components of the r and F vectors. For two dimensional 

problems the z components of the r and F vectors will 

simply be zero, but those values are necessary for the 

calculations. 

The moment vector you get will line up with the axis 

of rotation for the moment, where you can use the right 

hand rule to determine if the moment is going clockwise 

or counterclockwise about that axis. 
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Finally, it is also important to note that cross product, 

unlike multiplication, is not communicative. This means 

that the order of the vectors matters, and r cross F will 

not be the same as F cross r. It is important to always 

use r cross F when calculating moments. 

Source: Engineering Mechanics, Jacob Moore et al., 

http://mechanicsmap.psu.edu/websites/

3_equilibrium_rigid_body/moment_vector/

momentvector.html 
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Whether you use scalars: M = |r| |F| sinΘ or vectors: M = r x F 

you can solve most moment/torque problem. The scalar method is 

faster for 2-d problems, especially if the vectors are at 90 degree 

angles from each other (sin 90º = 1). The vector method is more 

robust, especially if there are additional angles involved. There is 

the potential to make errors, so it’s recommended to use the Step 

6 Review step to try multiple methods to ensure your answer is 

correct. 

See the examples in section 1.8 as many of them concern 

moments. 

Key Takeaways 

Basically: There are three methods to calculate moments, 

two of which were discussed here. Moments or Torque is 

created by a force acting some distance from an axis of 

rotation. 

Application: When you are opening a heavy door, you 

push on the door. If you push closer to the axis of rotation, 

you’ll need a bigger force to make it move. If you push 

further away from the axis (so r is bigger), the force can be 

smaller to make the same motion occur. 

Looking ahead: Moments apply when rigid bodies are 

involved, so we’ll pick up moments again in Chapter 3.1.3, 

when you’ll learn the third way to calculate moments 

(torque). 
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1.7 Problem Solving Process 

Learning how to use a structured problem solving process will help 

you to be more organized and support your future courses. Also, it 

will train your brain how to approach problems. Just like basketball 

players practice jump shots over and over to train their body how to 

act in high pressure scenarios, if you are comfortable and familiar 

with a structured problem solving process, when you’re in a high 

pressure situation like a test, you can just jump into the problem like 

muscle memory. 

6 Step Problem Solving Method: 

1. Problem 

◦ Write out the answer with all necessary information that is 

given to you. It feels like it takes forever, but it’s important 

to have the problem and solution next to each other. 

2. Draw 

◦ Draw the problem, this is usually a free-body diagram 

(don’t forget a coordinate frame). Eventually, as you get 

further into the course, you might need a few drawings. 

One would be a quick sketch of the problem in the real 

world, then modelling it into a simplified engineering 

drawing, and finally the free-body diagram. 

3. Known and Unknowns 

◦ Write out a list of the known/given values with the 

variable and unit, i.e m = 14 kg  (variable = number unit) 
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◦ Write out a list of the unknown values that you will have to 

solve for in order to solve the problem 

◦ You can also add any assumptions you made here that 

change the problem. 

◦ Also state any constants, i.e. g = 32.2 ft/m2  or g = 9.81 

m/s2 

◦ This step helps you to have all of the information in one 

place when you solve the problem. It’s also important 

because each number should include units, so you can see 

if the units match or if you need to convert some numbers 

so they are all in English or SI. This also gives you the 

variables side by side to ensure they are unique (so you 

don’t accidentally have 2 ‘d’ variables and can rename one 

with a subscript). 

4. Approach 

◦ Write a simple sentence or phrase explaining what 

method/approach you will be using to solve the problem. 

◦ For example: ‘use method of joints’, or equilibrium 

equations for a rigid body, MMOI for a certain shape, etc. 

◦ This is going to be more important when you get to the 

later chapters and especially next semester in Dynamics 

where you can solve the same problem many ways. Might 

as well practice now! 

5. Analysis 

◦ This is the actual solving step. This is where you show all 

the work you have done to solve the problem. 

◦ When you get an answer, restate the variable you are 

solving for, include the unit, and put a box around the 

answer. 

6. Review 
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◦ Write a simple sentence explaining why (or why not) your 

answer makes sense. Use logic and common sense for this 

step. 

◦ When possible, use a second quick numerical analysis to 

verify your answer. This is the “gut check” to do a quick 

calculation to ensure your answer is reasonable. 

◦ This is the most confusing step as students often don’t 

know what to put here and up just writing ‘The number 

looks reasonable’. This step is vitally important to help you 

learn how to think about your answer. What does that 

number mean? What is it close to? For example, if you find 

that x = 4000 m, that’s a very large distance! In the review, 

I would say, ‘the object is 4 km long which is reasonable for 

a long bridge’. See how this is compared to something 

similar? Or you could do a second calculation to verify the 

number is correct, such as adding up multiple parts of the 

problem to confirm the total length is accurate i.e. ‘x + y + 

z = total, yes it works!’ 

Additional notes for this course: 

• It’s important to include the number and label the steps so it’s 

clear what you’re doing, as shown in the example below. 

• It’s okay if you make mistakes, just put a line through it and 

keep going. 

• Remember your header should include your name, the page 

number, total number of pages, the course number, and the 

assignment number. If a problem spans a number of pages, you 

should include it in the header too. 
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Key Takeaways 

 

Basically: Use a 6-step structured problem solving 

process: 1. Problem, 2. Draw, 3. Known & Unknown, 4. 

Approach, 5. Analysis (Solve), 6. Review 
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Application: In your future job there is likely a structure 

for analysis reports that will be used. Each company has a 

different approach, but most have a standard that should be 

followed. This is good practice. 

Looking ahead: This will be part of every homework 

assignment. 

 

 

Written by Gayla & Libby 
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1.8 Examples 

Here are examples from Chapter 1 to help you understand these 

concepts better. These were taken from the real world and supplied 

by FSDE students in Summer 2021. If you’d like to submit your own 

examples, please send them to: 

eosgood@upei.ca 

Example 1.8.1: Vectors, Submitted by Tyson 
Ashton-Losee 

1. Problem 

After a long day of studying, a student 

sitting at their computer moves the cursor 

from the bottom left of the screen to the top 

right in order to close a web browser. The 

computer mouse was displaced 6 cm along 

the x-axis and 3.5 cm along the y-axis. Draw 

the resultant vector and calculate the 

distance traveled. 
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Source: 
https://
www.fli
ckr.com
/
photos/
dejankr
smanov
ic/
3321820
7918 
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2. Draw 

3. Knowns and Unknowns 

Known: 

x = 6 cm 

y = 3.5 cm 

Unknown: r, θ 

4. Approach 

Use SOH CAH TOA, first find θ, then r 

5. Analysis 

\begin{aligned} 

&\tan \theta=\frac{y}{x} \\ 

&\tan \theta=\frac{3.5 \mathrm{~cm}}{6 

\mathrm{~cm}} \\ 

&\theta=\tan ^{-1}\left(\frac{35}{6}\right) \\ 

&\theta=30.256^{\circ} \\ 

&\sin \theta=\frac{y}{r} \\ 

&r=\frac{y}{\sin \theta} \\ 

&r=\frac{35 \mathrm{~cm}}{\sin 

\left(30256^{\circ}\right)} \\ 

&r=6946 \mathrm{~cm} \\ 

1.8 Examples  |  95



&r=6.9 \mathrm{~cm} 

\end{aligned} 

 

6. Review 

It makes sense that the angle is less that 45, because y 

is smaller than x. Also, if you use Pythagorean theorem 

to find r, you get the same answer. 

 

Example 1.8.2: Vectors, Submitted by Brian 
MacDonald 

1. Problem 

Mark is fishing in the ocean with his 

favourite fishing rod. The distance between 

the tip of the rod and the reel is 8 ft and the 

length of the reel handle is 0.25 ft. The angle 
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between the fishing rod and fishing line is 45 

degrees. If Mark catches a fish when 25 ft of 

the fishing line is released while the fish is 

diving down with a force of 180 N, how much 

force does Mark need to apply (push down) 

to the reel handle to bring in the fish? Draw 

the position vector of the fish relative to the 

reel. 

Assumptions: 

• Mark can reel in the fish when he 

generates more torque with the handle 

than the amount of torque that the fish 

is applying to the reel while pulling on 

the line. 

• The fishing line comes out of the reel 

in a straight line at a 90-degree angle. 
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Source: https://commons.wikimedia.org/wiki/
File:Deepsea.JPG 
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2. Draw 

Sketch: 

Free-body diagram: 

3. Knowns and Unknowns 
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Known: 

rAB = 0.25 ft 

rBC = 8 ft 

rCD = 25 ft 

FD = 180 N 

θ = 45° 

Unknown: FA , vector rAD 

4. Approach 

Convert inches to meters, then use the below 

equation. 

[latex]T=|r| *|F| * \sin \theta\\[/latex] 

5. Analysis 

Step 1: convert inches to meters 

[latex]\begin{align} &25 \mathrm{ft} * \frac{12 

\mathrm{in}}{1 \mathrm{ft}} * \frac{2.54 

\mathrm{cm}}{\operatorname{l in} } * 

\frac{\operatorname{l m}}{100 \mathrm{cm}}=7.62 

\mathrm{m}\\\\ &\quad\mathrm{and}\\\\ &0.25 

\mathrm{ft} * \frac{12  \mathrm{in}}{1\mathrm{ft}} * 

\frac{2.54 \mathrm{cm}}{\operatorname{1 in} } * 

\frac{\mathrm{1 m}}{100 \mathrm{cm}}=0.0762 

\mathrm{m}\\ \end{align}[/latex] 

 

Step 2: solve for TD 

[latex]\begin{aligned}&T_{D}=\left|r_{C D}\right| * 

\left|F_{D}\right| * \sin \theta\\ &T_{D}=(7.62 m)(180 

N) \sin \left(45^{\circ}\right)\\ &T_{D}=969.86766 

\mathrm{Nm} \end{aligned}[/latex] 
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Step 3: Solve for FA 

[latex]\begin{aligned}&T_{A}=\left|r_{AB}\right| * 

\left|F_{A}\right| * \sin \theta\\ &\text { Assume } 

T_{A}=T_{D}\\ 

&F_{A}=\frac{T_{D}}{\left|r_{AB}\right| * \sin \theta} 

\\ &F_{A}=\frac{969.86766 \mathrm{ Nm}}{0.0762 

\mathrm{~m} \cdot \sin \left(45^{\circ}\right)} \\ 

&F_{A}=17,999.998 \mathrm{N} \\ &F_{A}=18,000 

\mathrm{N} \end{aligned}[/latex] 

 

Vector rAD: 

[latex]\begin{aligned} &\vec r_{A D}=\vec r_{A 

B}+\vec r_{B C}+\vec r_{C D} \\ &\vec {r}_{A 

D}=\left[\begin{array}{c} 0.25 \\ 0 \end{array}\right] f 

t+\left[\begin{array}{l} 0 \\ 8 \end{array}\right] f 

t+\left[\begin{array}{c} 25 \sin 45^{\circ} \\ -25 \cos 
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45^{\circ} \end{array}\right] f t \\ &\vec r_{A 

D}=\left[\begin{array}{cc} 17.93 \\ -9.68 

\end{array}\right] ft \end{aligned}[/latex] 

 

6. Review 

The answer, though yielding a very large number, 

appears to be correct from the information given. 

18,000 N of force is the amount of force Mark would 

need to apply the reel handle to generate the same 

amount of force that the fish creates. 18,000 N in reality 

is too much for one to generate but also in real 

scenario’s one would not have to generate the same 

amount of force to reel in the fish to reel gearing, the 

amount of torque generated by the fishing rod itself and 

etc. In other words 18 000 N of force is too high in a real 

scenario but with the assumptions given in the problem, 

the number seems reasonable. The answer also has the 

correct unit, N. 
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Example 1.8.3: Dot product and cross 
product, submitted by Anonymous ENGN 
1230 Student 

1. Problem 

$$\underline{a}=[6\;\;\;5\;\;\;3]\;\;\;\u

nderline{b}=[8\;\;\;1\;\;\;3]$$ 

a) Find 6b 

b) Find [latex]a\cdot b[/latex] 

c) Find [latex]a\times b[/latex] 

d) Find [latex]2a\times b[/latex] 

2. Draw 

n/a 

3. Knowns and Unknowns 

Known: a, b 

Unknowns: a) 6b, b) [latex]a\cdot b[/latex], c) 

[latex]a\times b[/latex], d) [latex]2a\times b[/latex] 

4. Approach 
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Use dot product, cross product equations 

5. Analysis 

Part a: 

$$6\underline{b}=6*[6\;\;\;5\;\;\;3]\\6\

underline{b}=[36\;\;\;30\;\;\;18]$$ 

Part b: 

$$\underline{a}\cdot\

underline{b}=[6\;\;\;5\;\;\;3]\cdot[8\;\;\;1\;\;\;3]\

\=6\cdot 8+5\cdot 1+3\

cdot3\\=48+5+9\\\underline{a}\cdot\

underline{b}=62$$ 

Part c: 

$$\underline{a}\times\underline{b}=\begin{bmatrix} 

\underline{\hat{i}} &\underline{\hat{ j}} & 

\underline{\hat{k}} \\ 

6 & 5 & 3 \\ 

8 & 1 & 3 

\end{bmatrix}\\(5\cdot 3-3\cdot 

1)\underline{\hat{i}}-(6\cdot 3-3\cdot 

8)\underline{\hat{ j}}+(6\cdot 1-5\cdot 

8)\underline{\hat{k}}\\\underline{a}\times\

underline{b}=12\underline{\hat{i}}+6\

underline{\hat{ j}}-34\underline{\hat{k}}$$ 

Part d: 

$$ 2\

underline{a}=2*[6\;\;\;5\;\;\;3]=[12\;\;\;10\;\;\;6]\\

\underline{b}=[8\;\;\;1\;\;\;3]\\2\

underline{a}\times\underline{b} = \begin{bmatrix} 

\underline{\hat{i}} & \underline{\hat{ j}} & 
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\underline{\hat{k}} \\ 

12 & 10 & 6 \\ 

8 & 1 & 3 

\end{bmatrix} \\=(10\cdot 3-6\cdot 

1)\underline{\hat{i}}-(12\cdot 3-6\cdot 

8)\underline{\hat{ j}}+(12\cdot 1-10\cdot 

8)\underline{\hat{k}}\\2\underline{a}\times\

underline{b}=24\underline{\hat{i}}+12\

underline{\hat{ j}}-68\underline{\hat{k}}$$ 

6. Review 

The answer to part d is double the answer for part c, 

which makes sense. It also makes sense that the 

answers to b, c, and d have values in three directions, 

while a only has magnitude. 

 

Example 1.8.4: Torque, Submitted by Luke 
McCarvill 

1. Problem 
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To start riding her bicycle, Jane must push 

down on one of her bike’s pedals which are 

on 16 centimeter long crank arms. Jane can 

push directly downwards with her legs with a 

force of 100N. Jane notices that the pedal’s 

starting position can sometimes make it 

more or less useful in generating torque. 

a) What is the ideal angle that Jane’s bike 

pedal should be at in order to generate the 

most torque? Prove this mathematically. 

(Assume we only care about the very start of 

her very first push, and choose a reference 

frame for the angle that makes most sense 

for you). 

b) What angle(s) should the bike pedal be at 

if Jane wants to generate exactly half of the 

maximum amount of torque? 

c) Is there any position(s) at which the 

pedal will create zero torque? Where are 

they and why? 
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Source: https://commons.wikimedia.org/wiki/
File:Girl_on_a_Bike_(Imagicity_116).jpg 
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Source: https://pixabay.com/illustrations/
bicycle-cycle-two-wheeler-pedal-3168934/ 

2. Draw 
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3. Knowns and Unknowns 

Knowns: 

[latex]\begin{aligned} &\vec r=\left[\begin{array}{c} 

0.16 \\ 0 \\ 0 \end{array}\right] m \\ &\vec 

F_{A}=\left[\begin{array}{c} 0 \\ -100 \\ 0 

\end{array}\right] N \end{aligned}[/latex] 

Unknowns: 

• position of r for maximum torque 

• position of r for half of maximum torque 

• position of r for zero torque, and why 

4. Approach 

For part a), I will find a general equation for torque 

based on the given values in terms of θ, then analyze the 

function for its maxima 

For part b), I will find the magnitude of 50% of 

maximum torque and then reverse-engineer the 
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equation to determine what angle(s) the pedal needs to 

be at to satisfy the equation. 

For part c), I will look back at my equation and find 

when the equation equals zero, then try to understand 

why given the example problem. 

5. Analysis 

Part a: 

[latex]\begin{aligned} &T=\left|\vec F_{A}\right| * 

\left|\vec r\right| * \sin \theta \\ &T=(100 N) *(0.16 m) 

* \sin \theta \\ &T=16 \sin \theta \mathrm{Nm} \\ 

&\quad\left\{90^{\circ}+360^{\circ} k ; k \in 

\mathbb{Z}\right\} \end{aligned}[/latex] 

 

Thinking about the shape of the sine function in the 

first period, the maximum occurs at 90 degrees. 

You could say algebraically that the maximum is at 90, 

450, 810 etc., but these angles all represent the same 

position on the wheel. Therefore, we will use 90. 

Part b: 

[latex]\begin{aligned} &T_1=\left|F_{A}\right| *|r| * 

\sin \theta \\ &T_1=(100 N)(0.16 m) \sin 90^{\circ} \\ 

&T_1=16 N m \end{aligned}[/latex] 

Find 50% of the maximum torque: 

[latex]T_2=\frac{T_1}{2}[/latex] 

[latex]\frac{16 Nm}{2}=8 Nm[/latex] 

Rearrange T2 equation: [latex]T_{2}=\left|F_{A}\right| 

*|{r}|  \sin \theta[/latex] 

[latex]\begin{aligned}&\sin \theta=\frac{T_{2}}{\left| 
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F_{A}\right| * \left| r \right|} \\ &\sin \theta=\frac{8 

N m}{(100 N)(0.16 m)} \\ &\sin \theta=0.5 \\ 

&\theta=30^{\circ}, 150^{\circ}, etc 

\end{aligned}[/latex] 

Therefore, Jane could push at 30 from vertical, or 150 

from vertical to create half the torque. 

*Interesting to note is that half the angle does not 

yield half the torque; the angle is 30, not 45. This is 

because the sine function is non-linear.* 

Part c: 

T = 16 sinθ tells us that the angles of 0 and 180 will 

give us zero torque. 

This makes sense given that pushing straight down on 

a stable pendulum will not cause the pendulum to 

rotate! 

Likewise, if you just stand on your pedals, you’re 

providing lots of downward force, but creating zero 

torque since the crank arm and the direction of the 

force are parallel (or antiparallel)! 

6. Review 

These answers have the correct units (Nm and 

degrees) and are within a reasonable order of magnitude 

based on the given information. See logic/explanations 

above for more detail. 
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Example 1.8.5: Torque, submitted by Hamza 
Ben Driouech 

1. Problem 

A person is pushing on a door with a force 

of 100 N. The door is at an angle α = 45° as 

shown in the sketch below. 

a) Calculate the moment when r is 45 cm 

and 75 cm. 

b) At what angle(s) is the moment zero? 

Explain why. 
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Assumptions: model the force as a single 

point load acting on the door. 

2. Draw 

Sketch: 

Free-body diagram: 
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3. Knowns and Unknowns 

Knowns: 

• F = 100 N 

• r1 = 45 cm 

• r2 = 75 cm 

• α = 45° 

Unknowns: 

• M1, M2, angle when M is zero 

4. Approach 

Use equation below. 

$$ M=|r|\cdot|F|\cdot\sin\theta$$ 

5. Analysis 

Part a) 

The angle we were given is not technically the one we 

should use in the moment equation. The angle should be 

between r and F. Therefore, we have to find the new 

angle. 
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As shown below, the angle we find is also 45°. Now we 

can continue and solve for M1 and M2. 

$$\theta=90^{\circ}-45^{\circ}$$ 

$$\theta=45^{\circ}$$ 

$$ M_1=|r_1|\cdot|F|\cdot\sin\theta\\M_1=0.45m\

cdot 100N\

sin(45^{\circ})\\m_1=31.82Nm\\\\M_2=|r_2|\cdot 

|F|\sin\theta\\M_2=0.75m\cdot 100N\cdot\

sin(45^{\circ})\\M_2=53.03Nm$$ 

Part b) 

$$M=|r|\cdot|F|\cdot\sin\theta\\if \sin\theta=0, 

M=0\\\sin\

theta=0\\\theta=\sin^{-1}(0)\\\theta=0^{\circ}, 

180^{\circ}, 360^{\circ}$$, etc 

Answer: the moment is zero when the angle between 

the force and the moment arm is 0° or 180° (360 would 

represent the same angle as 0°, as would 540°, etc.) 

6. Review 
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It makes sense that the moment is zero when the door 

is either closed or wide open, because when we apply a 

force at those positions, no movement of the door is 

possible. 

 

Example 1.8.6: Bonus Vector Material, 
Submitted by Liam Murdock 

1. Problem 

Firstly, George traveled a displacement of 

dg = [7   0  8] m from his car. George’s dog 

named Sparky on the other hand traveled a 

displacement of ds = [0  6  6] m from George’s 

car. Secondly, George called Sparky’s name 

and the dog ran to George’s position. It took 

Sparky four seconds to get there. 

a. What is the displacement from 
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George to his dog? 

b. What is Sparky’s velocity? (no need 

to draw) 

c. What is Sparky’s speed? (no need to 

draw) 

 

Source: https://www.piqsels.com/en/
public-domain-photo-oekac 

 

2. Draw 
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3. Knowns and Unknowns 

Part a: 

dg = [7   0  8] m                           Unknown: dsg= ? 

ds = [0  6  6] m 

Part b: 

dsg=(determined in A)               Unknown: vsg = ? 

t= 4 seconds 

Part c: 

vsg =(determined in B)              Unknown: vsg= ? 

4. Approach 

We are going to use vector operations (both 

subtraction and division), velocity – displacement 

relationship, velocity – speed relationship, and 

pythagoras theorem to solve this problem. 
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5. Analysis 

Part a: 

dsg= dg– ds 

dsg =[7   0  8] m – [0  6  6] m 

dsg =[7-0       0-6      8-6] m 

dsg =[7   -6    2] m 

Part b: 

vsg=dsg/t 

vsg=[7   -6    2] m/s 

vsg=[7/4     -6/4    2/4] m/s 

vsg=[1.75  -1.5   0.5] m/s 

Part c: 

vsg=vsg 

vsg=(vsgx)2 + (vsgy)2 + (vsgz)2 

vsg=(1.75)2 + (-1.5)2 + (0.5)2 

vsg=2.36 m/s 

 

6. Review 

Part a: 

One way to review the question is to walk through the 

solution verbally. Our solution shows that for Sparky to 

get to Gerorge, he must walk 7 m in the positive x-

direction (almost out of the page), 6 m in the negative y-

direction (left), and finally 2 m in the positive z-direction 

(up). 

Firstly, since the dog initially did not go in the x-

direction it makes sense Sparky would have to copy 
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George’s exact x movement. Secondly, since George did 

not move in the y – direction, it would make sense that 

Sparky would just have to retrace his steps and if he 

initially went 6 m right, he would have to go 6 m left. 

Thirdly, George and Sparky both went upwards, but 

George went 2 m higher with an altitude of 8 m 

compared to Sparky’s 6 m correlating to Spraky having 

to go positive 2 m in the z – direction to meet Geroge. 

Therefore, since all the movements make sense for 

Sparky to meet George (using logic), the answer is 

proven to be right. 

 

Part b and c: 

Since B and C correlate to the same magnitude they 

can be reviewed together. From a quick search, an 

average dog tops out at a speed of 19 miles per hour. We 

can convert this to SI units: 

[latex]\frac{19 \text { miles }}{1 h r}\left(\frac{1 

\mathrm{~km}}{0.621371 \text { miles 

}}\right)\left(\frac{1000 \mathrm{~m}}{1 

\mathrm{~km}}\right)\left(\frac{1 

\mathrm{hr}}{3600}\right)=8.49 \mathrm{~m} / 

\mathrm{s}[/latex] 

The top speed of an average dog is 8.49 m/s. So 

2.36m/s is approximately a quarter of the top speed of 

an average dog. Sparky probably was not sprinting at full 

speed and he could be a slower dog breed, making 

2.36m/s a reasonable answer. 
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CHAPTER 2: PARTICLES 

In this chapter, we analyze our first static bodies (motion where 

acceleration = 0), treating them as particles. The sections in this 

chapter include: 

• 2.1 Particle & Rigid Body – the difference between particles and 

rigid bodies 

• 2.2 Free Body Diagrams for Particles – learning how to model 

forces and motion 

• 2.3 Equilibrium Equations for Particles – analyzing static 

bodies 

• 2.4. Examples  – problems submitted by other students. 

Very simply, here are the important equations for this section (the 

Ch 1 equations might be helpful too) 
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2.1 Particle & Rigid Body 

This may seem like a simple concept, but it is important to know the 

difference between particles and rigid bodies, because it will change 

the type of analysis you perform. 

 

Particles are bodies where all the mass is 

concentrated at a single point in space. Particle analysis 

will only have to take into account the forces acting on 

the body and translational motion because rotation is 

not considered for particles. 

Rigid bodies on the other hand have mass that is 

distributed throughout a finite volume. Rigid body 

analysis is more complex and also has to take into 

account moments and rotational motions. In actuality, 

no bodies are truly particles, but some bodies can be 

approximated as particles to simplify analysis. Bodies 

are often assumed to be particles if the rotational 

motions are negligible when compared to the 

translational motions, or in systems where there is no 

moment exerted on the body such as a concurrent force 

system. 
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Source: Engineering Mechanics, Jacob Moore, et al. 

http://www.oercommons.org/courses/mechanics-

map-open-mechanics-textbook/view 

Particles are typically part of a larger scale, such as a sky diver falling 
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through the sky, or a football flying through the air. Rigid body 
analyses are required when the length or size of the object must be 
considered, such as if you need to calculate the torque from turning 

a bolt with a wrench, or if there is rotation, such as the bolt that is 

being turned. 

One way to think of it is that particles have mass, whereas rigid 

bodies have mass and shape. We make an assumption that neither 

particles nor rigid bodies deform (change shape). Note: we say 

particles don’t deform even though we are already assuming that 

the shape of particles is negligible. 

In baseball, if you want to consider how far the ball travels, that 

would be a particle analysis because the speed is much greater than 

the size of the ball. A rigid body analysis would be how the bat 

swings to hit the ball, because the length of the bat would change 

how far the ball travels. A rigid body analysis could be to calculate 

the spin on the ball as it flies through the air (if you focus on how it 

is rotating). 

 

Free photo: softball, batter, female, hitter, bat, helmet, stance | 

Hippopx 
Source: https://i0.hippopx.com/photos/613/24/1019/
softball-batter-girl-game-preview.jpg 

You would have done particle analyses in your high school physics 

classes. Starting in chapter 3, we’ll expand on these concepts to 

include rigid bodies and bring shape and size into the problem. 

Key Takeaways 
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Basically: Particles have non-deforming mass & rigid 

bodies have non-deforming mass with shape & size. Rigid 

body analyses are required when length or size of the 

object much be considered, including rotation and torque. 

Particle analyses are for a grander scale where the object is 

small in comparison to the distance or speed. 

Application: A particle analysis would be an airplane as it 

flies at a high speed through the air. A rigid body analysis 

would be if you analyze how the plane is rotating in order 

to turn, or to consider the size of the wheels as it is taxing 

on the runway or the size of the wings to keep it in the air. 

Looking ahead: Chapter 2 concerns particle analyses and 

Chapters 3 – 7 focus on rigid body analyses. 
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2.2 Free Body Diagrams for 
Particles 

A free-body diagram (FBD) helps you to simplify a complicated 

problem. The first thing to remember is the object should always be 

free which means, floating in space. You represent the floor or other 

surfaces with forces. You might have done these particle free body 

diagrams in your high school physics class, where all the forces act 

at the centre of the object. (This will be different for rigid bodies). 

To draw a free-body diagram remember four points: 

• Add coordinate frame (which way is positive x and positive y?) 

• Replace surfaces with forces ( floor, hand, and objects touching 

it become arrows) 

• Point forces in the correct direction (the head of the arrow 

points to where the force acts. FG acts down) 

• Use unique (different) names (be sure to name each force with a 

different name). 

For a baseball being hit by a bat (and neglecting air), the force of 

gravity acts at the center, the force of the bat acts on the outside. 

Notice in the figure1 the names FBat and FG are different in the figure 

below. Also – you can understand what they represent quickly. Also 

see the coordinate frame? You’ll be adding these in your sleep by the 

end of this class. 

1. Original image of baseball from: 

https://openclipart.org/detail/258473/baseball-refixed 

Annotations added by the author 
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As you draw a free body diagram, there are a couple of 

things you need to keep in mind: 

(1) Include only those forces acting ON the 

object whose free body diagram you are drawing. 

Any force exerted BY the object on some other 

object belongs on the free body diagram of the 

other object. 

(2) All forces are contact forces and every force 

has an agent. The agent is “that which is exerting 

the force.” In other words, the agent is the life 

form or thing that is doing the pushing or pulling 

on the object. No agent can exert a force on an 

object without being in contact with the object. 
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We are going to introduce the various kinds of forces 

by means of examples. Here is the first 

example: 

A rock is thrown up into the air by a person. Draw the 

free body diagram of the rock while it is up in the air. 

(Your free body diagram is applicable for any time after 

the rock leaves the thrower’s hand, until the last instant 

before the rock makes contact with whatever it is 

destined to hit.) Neglect any forces that might be exerted 

on the rock by the air. 

If you see the rock flying through the air, it 

may very well look to you like there is nothing 

touching the rock. But the earth’s gravitational 

field is everywhere in the vicinity of the earth. It 

can’t be blocked. It can’t be shielded. It is in the 

air, in the water, even in the dirt. It is in direct 

contact with everything in the vicinity of the 

earth. It exerts a force on every object near the 

surface of the earth. We call that force the 

gravitational force. You have already studied the 

gravitational force. We give a brief synopsis of it 

here. 
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The Gravitational Force Exerted on Objects 
Near the Surface of the Earth. 

Because it has mass, the earth has a 

gravitational field. The gravitational field is a 

force-per-mass field. It is invisible. It is not 

matter. It is an infinite set of force-per-mass 

vectors, one at every point in space in the 

vicinity of the surface of the earth. Each force 

per-mass vector is directed downward, toward 

the center of the earth and, near the surface of 

the earth, has a magnitude of 9.81 N/kg.  The 

effect of the earth’s gravitational field is to exert 

a force on any object that is in the earth’s 

gravitational field. The force is called the 

gravitational force and is equal to the product of 

the mass of the object and the earth’s 

gravitational field vector: Fg=mg. Where g=9.81 

N/kg is the magnitude of the earth’s 

gravitational field vector. The direction of the 

near-earth’s-surface gravitational force is 

downward, toward the center of the earth. 

Here is the free body diagram and the 

corresponding table of forces: 
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(1) The only thing touching the object while it 

is up in the air (neglecting the air itself) is the 

earth’s gravitational field. So there is only one 

force on the object, namely the gravitational 

force. The arrow representing the force vector is 

drawn so that the tail of the arrow is touching 

the object, and the arrow extends away from the 

object in the direction of the force. 

(2) Unless otherwise stipulated, label the 

diagram yourself however it makes most sense. 

Always draw a coordinate frame (Usually x is 

upwards, and y extends to the right). 

(3) There is no velocity information on a free 

body diagram 

(4) There is no force of the hand acting on the 

object because, at the instant in question, the 

hand is no longer touching the object. When you 

draw a free body diagram, only forces that are 

acting on the object at the instant depicted in 

the diagram are included. The acceleration of 

the object depends only on the currently-acting 

forces on the object. The force of the hand is of 

historical interest only. 

(5) Regarding the table of forces: 

a) Make sure that for any free body diagram you 

draw, you are capable of making a complete 
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table of forces. You are not required to provide a 

table of forces with every free body diagram you 

draw, but you should expect to be called upon to 

create a table of forces more than once. 

b) In the table of forces, the agent is the life form 

or thing that is exerting the force and the victim 

is the object on which the force is being exerted. 

Make sure that, in every case, 

the victim is the object for which the free body 

diagram is being drawn. 

c) In the case at hand, there is only one force so 

there is only one entry in the table of forces. 

d) For any object near the surface of the earth, 

the agent of the gravitational force is the earth’s 

gravitational field. It is okay to abbreviate that to 

“Earth” because the gravitational field of the 

earth can be considered to be an invisible part of 

the earth, but it is NOT okay to call it “gravity.” 

Gravity is a subject heading corresponding to 

the kind of force the gravitational force is, 

gravity is not an agent 

A ball of mass m hangs at rest, suspended by a string. 

Draw the free body diagram for the ball, and create the 

corresponding table of forces. 
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To do this problem, you need the following 

information about strings: 

The Force Exerted by a Taut String on an 
Object to Which it is Affixed (This also applies 

to ropes, cables, chains, and the like.) 

The force exerted by a string, on an object to 

which it is attached, is always directed away 

from the object, along the length of the string. 

Note that the force in question is exerted by the 

string, not for instance, by some person pulling 

on the other end of the string. The force exerted 

by a string on an object is referred to as a 

“tension force” and its magnitude is 

conventionally represented by the symbol FT. 

Note: There is no formula to tell you what the 

tension force is. If it is not given, the only way to 

get it is to use Newton’s 2nd Law. 

Here is the free body diagram of the ball, and 

the corresponding table of forces: 

There is no “force of motion” acting on an object. Once 

you have the force or forces 
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exerted on the object by everything that is touching the 

object, you have all the forces. Do not add a “force of 

motion” to your free body diagram. It is especially 

tempting to add this force when there are no actual forces 

in the direction in which an object is going. Keep in mind, 

however, that an object does not need a force on it to keep 

going in the direction in which it is going; moving along 

at a constant velocity is what an object does when there is 

no net force on it. 

Source: Calculus-Based Physics 1, Jeffery W. Schnick. 

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 page 

86 

 

Key Takeaways 

Basically: Free-body diagrams (FBDs) give you a way to 

model complicated problem in a simple way. All exterior 

forces are modeled with an arrow. 

Application: A baseball can be modeled using a FBD to 

show how the bat and gravity affect the ball. 

Looking ahead: You’ll use a FBD in every step 2 in nearly 

every homework problem. These are especially helpful with 

Equilibrium Equations in the next section. 
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2.3 Equilibrium Equations for 
Particles 

For a particle in static equilibrium, Newton’s 2nd law can be adapted 

for [latex]\vec a = 0[/latex] and componentized in x y and z: 

$$\sum\vec F=m*\vec a$$ 

$$\sum\vec F=0$$ 

$$\sum F_x=0\quad\quad\sum F_y=0\quad\quad\sum 

F_z=0$$ 

Notice that the left size of the equation says ‘sum of the forces’ 

which means add up all the forces in that direction. In statics, they 

will all cancel out. If you aren’t sure if something is in static motion, 

sum the forces and see if they equal 0. 

Static Equilibrium: 

Objects in static equilibrium are objects that are not 

accelerating (either linear acceleration or angular 

acceleration). These objects may be stationary, or they 

may have a constant velocity. 

Newton’s Second Law states that the force exerted on 

an object is equal to the mass of the object times the 

acceleration it experiences. Therefore, if we know that 

the acceleration of an object is equal to zero, then we 

can assume that the sum of all forces acting on the 

object is zero. Individual forces acting on the object, 
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represented by force vectors, may not have zero 

magnitude but the sum of all the force vectors will 

always be equal to zero for objects in equilibrium. 

The equations used when dealing with particles in 

equilibrium are: 

$$\sum\vec F=0$$ 

Which leads to: 

$$\sum F_x=0\\\sum F_y=0\\\sum F_z=0$$ 

Since it is a particle, there are no moments involved 

like there is when it comes to rigid bodies. 

Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/

2_equilibrium_concurrent/2-1_static_equilibrium/

staticequilibrium.html 

Finding the Equilibrium Equations: 

The first step in finding the equilibrium equations is 

to draw a free body diagram of the body being analyzed. 

This diagram should show all the known and unknown 

force vectors acting on the body. In the free body 

diagram, provide values for any of the know magnitudes 

or directions for the force vectors and provide variable 
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names for any unknowns (either magnitudes or 

directions). 

The first step in equilibrium analysis is drawing a free 

body diagram. This is done by removing everything but 

the body and drawing in all forces acting on the body. It 

is also useful to label all forces, key dimensions, and 

angles. 

Next you will need to chose the x, y, and z axes. These 

axes do need to be perpendicular to one another, but 

they do not necessarily have to be horizontal or vertical. 

If you choose coordinate axes that line up with some of 

your force vectors you will simplify later analysis. 

Once you have chosen axes, you need to break down 

all of the force vectors into components along the x, y 

and z directions (see the vectors page in Appendix 1 if 

you need more guidance on this). Your first equation will 

be the sum of the magnitudes of the components in the 

x direction being equal to zero, the second equation will 

be the sum of the magnitudes of the components in the 

y direction being equal to zero, and the third (if you 

have a 3D problem) will be the sum of the magnitudes in 
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the z direction being equal to zero. Collectively these 

are known as the equilibrium equations. 

Once you have your equilibrium equations, you can 

solve them for unknowns using algebra. The number of 

unknowns that you will be able to solve for will be the 

number of equilibrium equations that you have. In 

instances where you have more unknowns than 

equations, the problem is known as a statically 
indeterminate problem and you will need additional 

information to solve for the given unknowns. 

Example: 

$$F_g=(9.8)(6)\\F_g=58.8N\\\sum F_x=-T_1+T_2\

cos(15^{\circ})=0\\\sum F_y=T_2\

sin(15^{\circ})-58.8=0\\T_2=\frac{58.8}{\sin(15^{\cir

c})}=227.2N\\-T_1+227.2\

cos(15^{\circ})=0\\T_1=227.2\
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cos(15^{\circ})=219.4N\\T_1=219.4N\\T_2=227.2N$$ 

Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/

2_equilibrium_concurrent/

2-5_equilibrium_equations_particle/

equilibriumequationsparticle.html Many more examples 

are available at this site. 

See additional examples: Example 1, Example 5, 

Example 8 

 

Key Takeaways 
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Basically: Equilibrium equations allow you to separate the 

forces and motion into each axis. 

Application: A heavy object is lifted using a rope and 

pulley. Based on the forces, is it in static equilibrium? 

(Answer: if sum of the forces in each direction equal zero, 

then yes!) 

Looking ahead: We will next apply equilibrium equations 

to rigid bodies, allowing use to solve more complex 

problems. 
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2.4. Examples 

Here are examples from Chapter 2 to help you understand these 

concepts better. These were taken from the real world and supplied 

by FSDE students in Summer 2021. If you’d like to submit your own 

examples, please send them to the author eosgood@upei.ca. 

No examples submitted from students, yet. In the mean time, here 

are examples ( Example 1, Example 5, Example 8) from Engineering 

Mechanics, Jacob Moore, et al. http://mechanicsmap.psu.edu/

websites/2_equilibrium_concurrent/

2-5_equilibrium_equations_particle/

equilibriumequationsparticle.html 
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CHAPTER 3: RIGID BODY 
BASICS 

In this chapter, you will learn some fundamental tools for rigid 

bodies, what I call the rigid body basics. Recall, rigid bodies have 

mass and a particular shape or size. Here are the sections in this 

Chapter: 

• 3.1 Right Hand Rule – a way to help you make accurate 

coordinate frames 

• 3.2 Couples – rotational motion created from two forces 

• 3.3 Distributed Loads – a way to express a force over a certain 

area 

• 3.4 Reactions & Supports – how to model the constraints that 

keep an object in place 

• 3.5 Indeterminate Loads – how to determine if there are too 

many forces 

• 3.6 Examples – examples from your peers 

Here are the important equations for this chapter. 
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3.1 Right Hand Rule 

Before we can analyze rigid bodies, we need to learn a little trick to 

help us with the cross product called the ‘right-hand rule’. We use 

the right-hand rule when we have two of the axes and need to find 

the direction of the third. 

This is called a right-orthogonal system. The ‘orthogonal’ part 

means that the three axes are all perpendicular to each other, and 

the’ right’ part means that [latex]\underline{\hat{i}}\times\

underline{\hat{ j}}=\underline{\hat{k}}[/latex], hence the right 

hand rule. Remember these from section 1.5? 

▪ [latex]\underline{\hat{i}}\times\

underline{\hat{ j}}=\underline{\hat{k}}[/latex] 

▪ [latex]\underline{\hat{ j}}\times\

underline{\hat{k}}=\underline{\hat{i}}[/latex] 

▪ [latex]\underline{\hat{k}}\times\

underline{\hat{i}}=\underline{\hat{ j}}[/latex] 

▪ [latex]\underline{\hat{ j}}\times\underline{\hat{i}}=-

\underline{\hat{k}}[/latex] 

▪ [latex]\underline{\hat{k}}\times\underline{\hat{ j}}=-

\underline{\hat{i}}[/latex] 

▪ [latex]\underline{\hat{i}}\times\underline{\hat{k}}=-

\underline{\hat{ j}}[/latex] 

The opposite of the right-orthogonal system is the left-orthogonal 

system where [latex]\underline{\hat{i}}\times\

underline{\hat{ j}}=-\underline{\hat{k}}[/latex]. We don’t use that 

one! 

There are two ways to do the right hand rule, and they take 

practice to conceptually understand, but this will make solving 

problems much quicker. You’re going to use your fingers and thumb 

to represent the x, y, and z axes. 
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3.1.1 The Whole-Hand Method 

In the following description, A x B = C, so for the coordinate frame, 

X x Y = Z ([latex]\underline{\hat{i}}\times\

underline{\hat{ j}}=\underline{\hat{k}}[/latex]). Your fingers go in 

the direction of X, then you  bend them 90 degrees to point 

towards Y, and your thumb is in the direction of Z. 

The direction of the cross product vector A x B is 

given by the right-hand rule for the cross product of 

two vectors. To apply this right-hand rule, extend the 

fingers of your right hand so that they are pointing 

directly away from your right elbow. Extend your thumb 

so that it is at 

right angles to your fingers. 

Keeping your fingers aligned with your forearm, point 

your fingers in the direction of the first vector (the one 
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that appears before the “×” in the mathematical 

expression for the cross product; e.g. the A in A x B ). 

Now rotate your hand, as necessary, about an 

imaginary axis extending along your forearm and along 

your middle finger, until your hand is oriented such 

that, if you were to close your fingers, they would point 

in the direction of the second vector. 
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Your thumb is now pointing in the direction of the 

cross product vector. C = A x B. The cross product 

vector C is always perpendicular to both of the vectors 

that are in the cross product (the A and the B in the case 

at hand). Hence, if you draw them so that both of the 

vectors that are in the cross product are in the plane of 

the page, the cross product vector will always be 

perpendicular to the page, either straight into the page, 

or straight out of the page. In the case at hand, it is 

straight out of the page. 

When we use the cross product to calculate the 

torque due to a force F whose point of application has a 

position vector r, relative to the point about which we 

are calculating the torque, we get an axial torque vector 

τ. To determine the sense of rotation that such a torque 

vector would correspond to, about the axis defined by 

the torque vector itself, we use The Right Hand Rule For 

Something Curly Something Straight. Note that we are 

calculating the torque with respect to a point rather 

than an axis—the axis about which the torque acts, 

comes out in the answer. 

 

Source: Jeffrey W. Schnick 

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 

pages 135–137 

The hardest part of right-hand rule is imagining the different axes 

150  |  Statics

https://openlibrary.ecampusontario.ca/catalogue/item/?id=ce74a181-ccde-491c-848d-05489ed182e7
https://openlibrary.ecampusontario.ca/catalogue/item/?id=ce74a181-ccde-491c-848d-05489ed182e7


and envisioning how they are perpendicular to each other. 

Try this one in 2d and 3d. Imagine (or draw) the right-angle 

symbols (Answer will be in a few steps)

Example 1: 

Using this x and y, let’s use the right-hand rule to find the direction 

of z. 

Here are steps you can follow: 
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Example 2: 

Sometimes you will need to flip your hand 180 degrees to find which 

way lets you point your fingers in the y direction, for example: 
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Example 3: 

It’s important for you to be able to envision how the axes are 

perpendicular. Now practice using the right hand rule if you are 

trying to find x. 
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Your Turn! 

Keep going with these examples. The rules stay the same: thumb 

towards z, curled fingers towards y, extended fingers towards x. 

Find the missing axis:

. 

. 

Did you do it? 

. 

. 

. 

Here are the answers: 

. 

. 

3.1.2 Right Hand Rule and Torque 

The third way to calculate torque, as was alluded to in Section 1.6 

is to use the right hand rule to identify the axis of rotation. The 

first way (the scalar method) uses | M | = |r| |F| sin Θ, and often 

the angle between the position vector and force is 90 degrees. 

The vector method is for more complicated situations and uses 
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the cross product r x F = M. The third method finds the scalar 

value separately, then uses the right hand rule to find the direction 

(positive or negative along the third axis). 

• Point your fingers in the direction of the perpendicular part of 

position vector r (as you would for x) 

• Curl them towards the direction of the Force vector F (as you 

would for y) 

• Your thumb is in the direction of the moment M that results 

from the force (as for z) 

The following will help you understand what is meant by: the 

perpendicular part of position vector: 

The torque τ can be expressed as the cross product of 

the position vector r for the point of application of the 

force, and the force vector F itself: r x F = M 

Before we begin our mathematical discussion of what 

we mean by the cross product, a few words about the 

vector r are in order. It is important for you to be able to 

distinguish between the position vector r for the force, 

and the moment arm, so we present them below in one 

and the same diagram. We use the same example that 
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we have used before: 

in which we are looking directly along the axis of 

rotation (so it looks like a dot) and the force lies in a 

plane perpendicular to that axis of rotation. We use the 

diagramatic convention that, the point at which the 

force is applied to the rigid body is the point at which 

one end of the arrow in the diagram touches the rigid 

body. Now we add the line of action of the force and the 

moment arm r⊥ to the diagram, as well as the position 
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vector r of the point of application of the force. 

The moment arm can actually be defined in terms of 

the position vector for the point of application of the 

force. Consider a tilted x-y coordinate system, having an 

origin on the axis of rotation, with one axis parallel to 

the line of action of the force and one axis 

perpendicular to the line of action of the force. We label 

the x axis ┴ for “perpendicular” and the y axis || for 
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“parallel”.

Now we break up the position vector r into its 

component vectors along the ┴ (perpendicular) and || 

(parallel) axes. 
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From the diagram it is clear that the moment arm r is 

just the magnitude of the component ┴ vector, in the 

perpendicular-to-the-force direction, of the position 

vector of the point of application of the force. 

Source: Calculus Based Physics, Jeffrey W. 

Schnick, https://openlibrary.ecampusontario.ca/

catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 

pages 132–137 

 

You use the right hand rule twice during this method to find the 

vector. First to determine the coordinate frame and again to see 

which the direction the torque is aligned. Then you multiply by the 

magnitude of the perpendicular portion of the position vector (r⊥ 

or the “moment arm”) and the magnitude of the force vector. ): 

3.1 Right Hand Rule  |  159

https://openlibrary.ecampusontario.ca/catalogue/item/?id=ce74a181-ccde-491c-848d-05489ed182e7
https://openlibrary.ecampusontario.ca/catalogue/item/?id=ce74a181-ccde-491c-848d-05489ed182e7
https://openlibrary.ecampusontario.ca/catalogue/item/?id=ce74a181-ccde-491c-848d-05489ed182e7


|M| = +/- |r⊥| |F| [latex]\hat{\underline{k}}[/latex] 

* though it’s not always the [latex]\hat{\underline{k}}[/latex] 

direction, it could be [latex]\hat{\underline{i}}[/latex] or 

[latex]\hat{\underline{ j}}[/latex] as well. It depends how you define 

your coordinate frame. 

Example 4: 

3.1.3 Three-Finger Configuration 

If you find curling your fingers too confusing, you can try this 

method that uses your thumb, pointer finger, and middle finger all 

90 degrees apart. Your thumb is x, your pointer finger is y, your 

middle finger is z. 
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This is done by using your right hand, aligning your 

thumb with the first vector and your index with the 

second vector. The cross product will point in the 

direction of your middle finger (when you hold your 

middle finger perpendicular to the other two fingers). 

This is illustrated in Figure A.14. Thus, you can often 

avoid using equation A.1 and instead use the right hand 

rule to determine the direction of the cross product and 

equation A.2 to find its magnitude. 

 

Source: Introductory Physics, Ryan Martin et 

al.,https://openlibrary.ecampusontario.ca/catalogue/
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item/?id=4c3c2c75-0029-4c9e-967f-41f178bebbbb, page 

823–825 

The “Curly Method” 

For axial vectors, you use what I’m calling the curly method. To find 

whether the axis of rotation is positive or negative, curl your fingers 

in the direction of rotation and your thumb shows the direction of 

rotation, i.e. whether rotation is along the positive or negative x y 

or z direction. (This assumes you already have a coordinate frame 

defined to see which axis the wheel is rotating around and which 

direction). 

If a wheel is rolling, the axis is what it rolls around. Curl your 

fingers in the direction of rotation and your thumb shows the 

direction of rotation.1 

 

1. Hand from page 127 of Calculus Based Physics, Jeffrey W. 

Schnick, https://openlibrary.ecampusontario.ca/

catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 & tire 

from page 828 of Introductory Physics, Ryan Martin et 

al., https://openlibrary.ecampusontario.ca/catalogue/

item/?id=4c3c2c75-0029-4c9e-967f-41f178bebbbb, 

Edited by author. 
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Key Takeaways 

Basically: The right hand rule helps us to be consistent 

with how the x – y – z axes are oriented. It follows the rule 

that X x Y = Z. Using your fingers and thumb, there are two 

different methods. For one: point your fingers in the 

direction of x, curl them towards y (you may have to flip 

your hand), and your thumb shows the direction of z. 

Trying to copy this 3d image onto your 2d page may be 

difficult, but with practice you’ll see the right angles 

between the drawn axes. 

Application: How do I know which way to push on the 

torque wrench to make the bolt on my wheel turn? If I 
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point my thumb in the direction I want the bolt to move, 

and curl my fingers around the direction of the threads, I 

can see whether to push or pull on the wrench. 

Looking Ahead: We will calculate the moment many times 

throughout the rest of the book, and we need the right-

hand rule every time especially as we get into Chapter 4 

and Rigid Body Equilibrium Equations. 
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3.2 Couples 

A couple is a set of equal and opposite forces that 

exerts a net moment on an object but no net force. 

Because the couple exerts a net moment without 

exerting a net force, couples are also sometimes 

called pure moments. 
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The moment exerted by a couple also differs from the 

moment exerted by a single force in that it is 

independent of the location you are taking the moment 

about. In the example below we have a couple acting on 

a beam. Each force has a magnitude F and the distance 

between the two forces is d. 
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Now we have some point A, which is distance x from 

the first of the two forces. If we take the moment of 

each force about point A, and then add these moments 

together for the net moment about point A we are left 

with the following formula. 

$$M=-(F\ast x)+(F\ast(x+d))$$ 

If we rearrange and simplify the formula above, we 

can see that the variable x actually disappears from the 

equation, leaving the net moment equal to the 

magnitude of the forces (F) times the distance between 

the two forces (d). 

$$M=-(F\ast x)+(F\ast x)+(F\ast d)\\\\M=(F\ast 

d)$$ 

This means that no matter what value of x we have, 

the magnitude of the moment exerted by the couple will 

be the same. The magnitude of the moment due to the 

couple is independent of the location we are taking the 

moment about. This will also work in two or three 

dimensions as well. The magnitude of the moment due 

to a couple will always be equal to the magnitude of the 
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forces times the perpendicular distance between the 

two forces. 

Source: Engineering Mechanics, Jacob Moore et al., 

http://mechanicsmap.psu.edu/websites/

3_equilibrium_rigid_body/3-3_couples/couples.html 

Key Takeaways 

Basically: Couples are made from two forces in opposite 

directions that create a moment around an axis 

Application: Turning the steering wheel of your car, you 

push one hand up and the other down to turn the wheel. To 

calculate the size of the couple, you multiply the force 

exerted by the distance between your hands (the diameter 

of the wheel). 

Looking Ahead: While moments are more common in Ch 4 

rigid body equations, it’s important to know what couples 

are and how to find them. 
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3.3 Distributed Loads 

3.3.1 Intensity 

Distributed loads are a way to represent a force over a certain 

distance. Sometimes called intensity, given the variable: 

Intensity               w = F / d          [=]    N/m, lb/ft 

While pressure is force over area (for 3d problems), intensity is 

force over distance (for 2d problems). It’s like a bunch of mattresses 

on the back of a truck. You can model it as 1 force acting at the 

center (an equivalent point load as in 3.3.2, or you can model it as 

intensity and divide the total force by the width of the truck bed (the 

distance that’s not visible in this image1). 

 

1. Image of truck from: https://get.pxhere.com/photo/

car-transport-truck-vehicle-market-mattress-full-load-

small-business-rwanda-overload-pickup-truck-overfull-

automobile-make-612534.jpg 
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A distributed load is any force where the point of 
application of the force is an area or a volume. This 

means that the “point of application” is not really a point 

at all. Though distributed loads are more difficult to 

analyze than point forces, distributed loads are quite 

common in real world systems so it is important to 

understand how to model them. 

Distributed loads can be broken down into surface 
forces and body forces. Surface forces are distributed 

forces where the point of application is an area (a 

surface on the body). Body forces are forces where the 

point of application is a volume (the force is exerted on 

all molecules throughout the body). Below are some 

examples of surface and body forces. 

Distributed loads are represented as a field of vectors. 

This is drawn as a number of discrete vectors along a 
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line, over a surface, or over a volume, that are 

connected with a line or a surface as shown below. 

Though these representations show a discrete 

number of individual vectors, there is actually a 

magnitude and direction at all points along the line, 

surface, or body. The individual vectors represent a 

sampling of these magnitudes and directions. 

It is also important to realize that the magnitudes of 

distributed forces are given in force per unit distance, 

area, or volume. We must integrate the distributed load 

over its entire range to convert the force into the usual 

units of force. 
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Analyzing Distributed Load: 

For analysis purposes in statics and dynamics, we will 

usually substitute in a single point force that is statically 

equivalent to the distributed load in the problem. This 

single point force is called the equivalent point load and 

it will cause the same accelerations or reaction forces as 

the distributed load while simplifying the math. 

Source: Engineering Mechanics, Jacob Moore et al., 

http://mechanicsmap.psu.edu/websites/

4_statically_equivalent_systems/

4-4_distributed_forces/distributedforces.html 

An additional example: 

This is a more complex example of a distributed load. 

This is a cartoon of an airplane with its wing covered in 

a combination of snow and ice. In a real world situation 

loads will not accommodate people for ease of 
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calculation, you get what you get. In this case we could 

approximate this shape with two semi-circles on each 

end of the wing with a triangle (∇" 

role="presentation">∇) in the middle. For more accuracy 

we could use a system similar to the trapezoidal rule. 

Source: ” Statics” by LibreTexts is licensed under CC 

BY-NC-SA . https://eng.libretexts.org/Bookshelves/

Introduction_to_Engineering/

EGR_1010%3A_Introduction_to_Engineering_for_Eng

ineers_and_Scientists/

14%3A_Fundamentals_of_Engineering/

14.11%3A_Mechanics/14.11.01%3A_Statics 

3.3.2 Equivalent Point Load & Location 

Distributed loads can be modeled as a single point force that is 

located at the centroid of the object. You can use straight-forward 

algebra, or use integration for more complex shapes. Then you 

replace the distributed load with the single point load acting at x 

distance. See in the truck example: 
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There are two ways to calculate this, using integrals and using the 

area and centroid. 

An equivalent point load is a single point force that 

will have the same effect on a body as the original 

loading condition, which is usually a distributed load. 

The equivalent point load should always cause the same 

linear acceleration and angular acceleration as the 

original load it is equivalent to (or cause the same 

reaction forces if the body is constrained). Finding the 

equivalent point load for a distributed load often helps 

simplify the analysis of a system by removing the 

integrals from the equations of equilibrium or equations 

of motion in later analysis. 

Finding the Equivalent Point Load 

When finding the equivalent point load we need to 
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find the magnitude, direction, and point of application 

of a single force that is equivalent to the distributed load 

we are given. In this course we will only deal with 

distributed loads with a uniform direction, in which case 

the direction of the equivalent point load will match the 

uniform direction of the distributed load. This leaves the 

magnitude and the point of application to be found. 

There are two options available to find these values: 

1. We can find the magnitude and the point of 

application of the equivalent point load via 
integration of the force functions. 

2. We can use the area/volume and the centroid/
center of volume of the area or volume under the 

force function. 

The first method is more flexible, allowing us to find 

the equivalent point load for any force function that we 

can make a mathematical formula for (assuming we have 

the skill in calculus to integrate that function). The 

second method is usually faster, assuming that we can 

look up the values for the area or volume under the 

force curve and the values for the centroid or center of 

volume for the area under the curve. 

Using Integration in 2D Surface Force 
Problems: 

Finding the equivalent point load via integration 

always begins by determining the mathematical formula 
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that is the force function. The force function 

mathematically relates the magnitude of the force (F) to 

the position (x). In this case the force is acting along a 

single line, so the position can be entirely determined by 

knowing the x coordinate, but in later problems we may 

also need to relate the magnitude of the force to the y 

and z coordinates. In our example to the left, we can 

relate magnitude of the force to the position by stating 

that the magnitude of the force at any point in Newtons 

per meter is equal to the x position in meters plus one. 

The magnitude of the equivalent point load will be 

equal to the area under the force function. This will be 

the integral of the force function over it’s entire length 

(in this case from x = 0 to x = 2). 

$$F_{eq}=\int_{xmin}^{xmax}F(x)dx$$ 
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Now that we have the magnitude of the equivalent 

point load such that it matches the magnitude of the 

original force, we need to adjust the position (xeq) such 

that it would cause the same moment as the original 

distributed force. The moment of the distributed force 

will be the integral of the force function (F(x)) times the 

moment arm about the origin (x). The moment of the 

equivalent point load will be equal to the magnitude of 

the equivalent point load that we just found times the 

moment arm for the equivalent point load (xeq). If we set 

these two things equal to one another and then solve for 

the position of the equivalent point load (xeq) we are left 

with the following equation: 

$$x_{eq}=\frac{\int_{xmin}^{xmax}(F(x)\ast 

x)dx}{F_{eq}}$$ 

Now that we have the magnitude, direction, and 

position of the equivalent point load, we can draw the 

point load in our original diagram. This point force can 

be used in place of the distributed force in further 

analysis. 
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Using the Area and Centroid in 2D 
Surface Force Problems: 

As an alternative to using integration, we can use the 

area under the force curve and the centroid of the area 

under the force curve to find the equivalent point load’s 

magnitude and point of application respectively. 
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The magnitude(Feq) of the equivalent point load will 

be equal to the area under the force function. We can 

find this area using calculus, but there are often easier 

geometry based ways of finding the area under the force 

function. 

The equivalent point load will also travel through 
centroid of the area under the force function. This 

allows us to find the value for xeq. The centroid for many 

common shapes can be looked up in tables, and the 

parallel axis theorem can be used to determine the 

centroid of more complex shapes (see the centroid page 

for more details). 
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Source: Engineering Mechanics, Jacob Moore et al., 

http://mechanicsmap.psu.edu/websites/

4_statically_equivalent_systems/

4-5_equivalent_point_load/equivalentpointload.html 

 

Here are the equations for some common shapes: 

 

Example 1: Equivalent force and location: 

What is the resultant force and where does it act from the wall? 
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Source: http://mechanicsmap.psu.edu/websites/
4_statically_equivalent_systems/4-5_equivalent_point_load 

 

See solution here using integration from Engineering Mechanics, 

Jacob Moore et al., http://mechanicsmap.psu.edu/websites/

4_statically_equivalent_systems/4-5_equivalent_point_load/

pdf/EquivalentPointLoad_WorkedExample1.pdf 

 

Example 2 (note: 1 kip = 1000 lb): 
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Example 3: 

Example 4: 
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Source: ” Equilibrium Structures, Support Reactions, 

Determinacy and Stability of Beams and Frames” by 

LibreTexts is licensed under CC BY-NC-ND . 

https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.03%3A_Equilibrium_Structures_Support_Reactions_

Determinacy_and_Stability_of_Beams_and_Frames 
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3.3.3 Composite Distributed Loads 

When there is a complicated shape, it can be easier to model it 

as more than 1 type of distributed load. You calculate each force 

separately and then use a weighted equation to find the total 

distance the force acts from a point that you select. 

[latex]\quad\quad\quad\quad\text{Using area: }\quad\quad\

quad\quad\quad\quad\quad\quad\quad \text{Using 

Integrals:}\\ \quad\quad\quad\quad\bar{x}=\frac{\sum 

F_{i}x_i}{\sum F_i} \quad\quad\quad\quad\quad\quad\quad\

quad\quad\quad \bar{x}=\frac{\int x w(x) d x}{\int w(x) d 

x}[/latex] 

A bit bigger: 

For the following complex shape, this is how you find the 

composite equivalent point force and location 

([latex]\bar{x}[/latex]): 
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Key Takeaways 

Basically: Distributed loads are a way to model forces in 

2d. F = w d   Sometimes called intensity, distributed loads 

have units of force over distance: N/m or lb/ft. 

Application: For a truck carrying a heavy uneven load, 

find where the center of the force is. 

Looking ahead: Distributed load helps to model uneven 

loads. We’ll see it again as we do beam analysis 
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3.4 Reactions & Supports 

Imagine a beam extending from the wall. How much weight can the 

beam handle before it breaks away or falls ‘off’ the wall? It depends 

on the way it’s attached to the wall. We model these real world 

situations using forces and moments.For example, the grand canyon 

skywalk lets people walk out over the grand canyon. You want to be 

sure that the skywalk is so the people on it are safe. 

We call the skywalk a cantilever beam and turn the real world 

beam into a 2d model with constrains. So we can use the same 

terminology, it is a fixed constraint, preventing horizontal 

movement, vertical movement, and rotation. 
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Reaction forces and moments are how we model constraints on 

structures. They are external forces. There are 3 different kinds 

of constraints we will focus on in this course and they each have 

different reaction forces and moments: 

1.  Pinned (Frictionless)

◦ Two reaction forces acting perpendicularly in the x and y 

directions. 

◦ Pinned constraint and then its free body diagram shown: 

 

2.  Fixed 

◦ Two reaction forces acting perpendicularly in the x and y 

directions
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◦ Moment rotating about fixed constraint (usually a wall), 

use right hand rule to find its direction 

◦ This is also called a cantilever beam. 

◦ Fixed constraint and then FBD shown 

 

3.  Roller (there are multiple kinds)

◦ Single reaction force acting in the y direction 

◦ No moment is created 

◦ This can be the ground that the object rests on as well 

◦ Free body diagram shown for roller 

 

Notice that the Fixed restraint is the most restrictive and the 

roller is the least restrictive. You put a force to show how the 

restraint restricts motion. The roller only keeps the object from 

moving vertically, so there is only 1 force. The pinned restraint 

doesn’t allow horizontal or vertical movement, hence the two 

forces. The fixed beam restricts vertical translation, horizontal 

translation, and rotation, so there is a moment and two forces. Note 

that this applies only to 2d restraints. 

Here is a summary showing what motion is allowed by that type 

of constraint: 
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Typically reaction forces are either as follows: a pinned and a 

fixed reaction force together (1 reaction force + 2 reaction forces = 

3 restraints) or a fixed beam (2 reaction forces and 1 moment = 3 

restraints). 

The information shown here is to model 2d situations. We don’t 

get into 3d problems in this statics course, needless to say, there 

are more reaction forces and moments involved in 3-dimentsions 

instead of 2 dimensions. The following section provides a second 

explanation on reactions & supports: 
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3.4.1 Pin or Hinge Support 

A pin support allows rotation about any axis but 

prevents movement in the horizontal and vertical 

directions. Its idealized representation and reactions are 

shown in Table 3.1: 

3.4.2 Roller Support 

A roller support allows rotation about any axis and 

translation (horizontal movement) in any direction 

parallel to the surface on which it rests. It restrains the 

structure from movement in a vertical direction. The 

idealized representation of a roller and its reaction are 

also shown in Table 3.1. 

3.4.3 Rocker Support 
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The characteristics of a rocker support are like those 

of the roller support. Its idealized form is depicted in 

Table 3.1. 

3.4.4 Link 

A link has two hinges, one at each end. It permits 

movement in all direction, except in a direction parallel 

to its longitudinal axis, which passes through the two 

hinges. In other words, the reaction force of a link is in 

the direction of the link, along its longitudinal axis. 

3.4.5 Fixed Support 

A fixed support offers a constraint against rotation in 

any direction, and it prevents movement in both 

horizontal and vertical directions. 

 

Example 1: 
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Example 2 (Ax added even though it turns out to be 0): 

Example 3: 
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Example 4: 
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Source: ” Equilibrium Structures, Support Reactions, 

Determinacy and Stability of Beams and Frames” by 

LibreTexts is licensed under CC BY-NC-ND . 

https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.03%3A_Equilibrium_Structures_Support_Reactions_

Determinacy_and_Stability_of_Beams_and_Frames 
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Key Takeaways 

Basically: Reaction forces and moments (or constraints) 

show how motion is restricted, here that is in 2 dimensions. 

Application: A beam attached to the wall has three ways 

of restricting the motion: horizontal, vertical, and 

rotational. 

Looking Ahead: Every time we model an scenario, we will 

use reaction forces to show what type of motion is being 

restrained. In Chapter 4, we will be able to calculate the 

reaction forces/moments. 

 

Written by Gayla & Libby 
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3.5 Indeterminate Loads 

Determinate Loads 

Once you have your equilibrium equations, you can solve them for 

unknowns using algebra. The number of unknowns that you will be 

able to solve for will be the number of equilibrium equations that 

you have. In the x-y-z coordinate frame, there are 3 equations. so 

there can be 3 unknowns. These are statically determinate. 

Typically reaction forces are either as follows: a pinned and a 

fixed reaction force together (1 reaction force + 2 reaction forces = 

3 restraints) or a fixed beam (2 reaction forces and 1 moment = 3 

restraints). 

Indeterminate Loads 

When you have more unknowns than equations, the problem is 

a statically indeterminate problem and you will need additional 

information to solve for the given unknowns. You’ll learn how to 

model and solve for these problems in your Structures course, but 

for Statics you need to be able to identify what is determinate and 

what is indeterminate. 

Essentially, a problem in statically indeterminate if there are more 

unknown variables then there are equations you can use to solve 

for the unknowns. This means it cannot be solved using equilibrium 
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equations alone. You would need to simplify the problem or make 

as assumption for it to be solved. You’ll look into that more in 

Structures, because in real life, we want redundancy. We want to be 

sure that structures are strong and one part can fail but that the 

whole building doesn’t collapse. However, we cannot over-constrain 

something so that is breaks because it has no way to expand during 

heat or cooling. All of this makes it harder to model, but safer to use. 

Here are examples of statically indeterminate problems: 

Here is a real world example of beams. Notice the breaks between 

sections (in the yellow circles) to allow for expansion and 

contraction. The top beam in between yellow circles would be an 

example of a pin and roller system where one side is pinned and the 

other side is a roller allowing for horizontal expansion. 

 

3.5 Indeterminate Loads  |  197



Source: https://www.maxpixel.net/
Guangdong-Structure-Shenzhen-Bridge-Metro-Station-5998185 

Examples of statically indeterminate structures: 
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Source: ” Equilibrium Structures, Support Reactions, 

Determinacy and Stability of Beams and Frames” by 

LibreTexts is licensed under CC BY-NC-ND . 

https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.03%3A_Equilibrium_Structures_Support_Reactions_

Determinacy_and_Stability_of_Beams_and_Frames 

 

 

 

Key Takeaways 

Basically: When you have more unknowns than 

equations, the problem is a statically indeterminate 

problem 

Application: Most situations are statically indeterminate, 
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such as how beams are supported to provide for 

redundancy, thus we make assumptions to model a problem 

using equilibrium equations. 

Looking Ahead: In Structures you will learn how to solve 

for statically indeterminate problems. In Statics, you need 

to be able to identify them. 

 

Written by Gayla & Libby 
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3.6 Examples 

Here are examples from Chapter 3 to help you understand these 

concepts better. These were taken from the real world and supplied 

by FSDE students in Summer 2021. If you’d like to submit your own 

examples, please send them to the author eosgood@upei.ca. 

Example 3.6.1: Reaction Forces, Submitted 
by Andrew Williamson 

1. Problem 

A family is sitting watching TV on their 

couch. The couch is 5 m long and weighs 120 

N. The child is sat 1 m away from one end and 

has a mass of 30 kg. The mother is sat 0.5 m 

away from the child and has a mass of 60 kg. 

The father is 3 m away from the mother and 

has a mass of 70 kg. 

a) Draw a free-body diagram of the couch 
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b) Calculate the reaction force on each of 

the two legs. 

Assume the couch is supported by two 

rollers. 

Source: https://www.maxpixel.net/
Seat-Couch-Interior-Home-Furniture-Room-Sofa-4
2817 

2. Draw 

Sketch: 
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3. Knowns and Unknowns 

Knowns: 

• g = 9.81 m/s2 

• mc = 30 kg 

• mM = 60 kg 

• mf = 70 kg 

• Fg = 120 N 

• rc = 1 m 

• rM = 1.5 m 

• rf = 4.5 m 

• rB = 5 m 

• rg = 2.5 m 

Unknowns: NA, NB 

4. Approach 

Use equilibrium equations 
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5. Analysis 

Part a: 

Part b: 

$$\sum M_B=0=N_B\cdot r_B-F_c\cdot r_c-

F_M\cdot r_M-F_f\cdot r_f-F_g\cdot 

r_g\\\\N_B(5m)=(30kg\cdot 9.81m/s^2)(1m)+(60kg\

cdot 9.81m/s^2)(1.5m)\\+(70kg\cdot 9.81m/

s^2)(4.5m)+(120N)(2.5m)$$$$\\N_B(5m)=294.3Nm+882.

9Nm +3090.15Nm+300Nm\\\\N_B(5m)=4567.35N 

m\\\\N_B\

frac{4567.35Nm}{5m}\\\\N_B=913.47N\\\\N_B=913N

$$ 
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$$\sum F_y=0=N_A+N_B-F_C-F_M-F_f-

F_g\\\\N_A=F_C+F_M+F_f+F_g-

N_B\\\\N_A=(30kg\cdot 9.81m/s^2)+(60kg\cdot 

9.81m/s^2)\\+(70kg\cdot 9.81m/

s^2)+120N-913.47N$$$$\\N_A=294.3N+588.6N+686.7N+

120N-913.47N$$$$\\N_A=776.13N\\\\\\underline{N_

A=776N}$$ 

 

6. Review 

It is interesting that NB is larger than NA, because the 

weight of the mother and child combined (80 kg) is 

larger than that of the father (70 kg). However, when you 

sum the moments at point B instead of A, you get the 

same answer. The distance between the reaction forces 

and the nearest forces is important, as well as the 

magnitude of the forces themselves. The distance 

between A and Fc is 1 m, while the distance between B 

and Ff is only 0.5 m. 

Additionally, it makes sense that both NA and NB are 

positive, i.e. are in the positive y direction. 
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Example 3.6.2: Couples, Submitted by Kirsty 
MacLellan 

1. Problem 

A water valve is opened by a wheel with a 

diameter of 10 inches. It takes 7.5 lb of force 

to open the valve. What is the moment it 

takes to open the valve? 

Real-life scenario: 

Source: https://www.pxfuel.com/en/
free-photo-ekahu 
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2. Draw 

Sketch: 

Free-body diagram: 
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3. Knowns and Unknowns 

Known: 

d = 10 in 

F = 7.5 lb 

Unknown: M 

4. Approach 

Determine the moment by finding the cross product 

of rA and FA, then rB and FB, then add. 

5. Analysis 

Find radius: 

$$r=\frac{d}{2}\\r=\frac{10in}{2}\\r=5in\\5in\

times\frac{1ft}{12in}=0.42ft$$ 

Find rA, FA, rB, and FB in vector form: 

$$ \underline{r}_A= \begin{bmatrix} 

0.42 \\ 

0 

\end{bmatrix}ft\:\; \underline{F}_A=\begin{bmatrix} 

0 \\ 

7.5 

\end{bmatrix}lb \\\underline{r}_B=\begin{bmatrix} 

-0.42 \\ 

0 

\end{bmatrix}ft\:\; \underline{F}_B=\begin{bmatrix} 

0 \\ 

-7.5 

\end{bmatrix}lb $$ 
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Find MA: 

$$\underline{M}_A=\underline{r}_A\times 

\underline{F}_A=\begin{bmatrix} 

\underline{\hat{i}} & \underline{\hat{ j}} & 

\underline{\hat{k}} \\ 

0.42 & 0 & 0 \\ 

0 & 7.5 & 0 

\end{bmatrix}$$ $$\underline{M}_A=\hat{i} 

\begin{bmatrix} 

0 & 0 \\ 

7.5 & 0 

\end{bmatrix} -\underline{\hat{ j}} \begin{bmatrix} 

0.42 & 0 \\ 

0 & 0 

\end{bmatrix}+\underline{\hat{k}} \begin{bmatrix} 

0.42 & 0 \\ 

0 & 7.5 

\end{bmatrix}\\\underline{M}_A=(\underline{\hat{i}}(

0)-\underline{\hat{ j}}(0)+\underline{\hat{k}}(o.42\cdot 

7.5-0\cdot 0))ft\cdot lb\\\underline{M}_A=3.15\

underline{\hat{k}} ft\cdot lb$$ 

Find MB: 

$$\underline{M}_B=\underline{r}_B\times 

\underline{F}_B=\begin{bmatrix} 

\underline{\hat{i}} & \underline{\hat{ j}} & 

\underline{\hat{k}} \\ 

-0.42 & 0 & 0 \\ 

0 & -7.5 & 0 

\end{bmatrix}$$$$\underline{M}_B=\hat{i} 

\begin{bmatrix} 

0 & 0 \\ 
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-7.5 & 0 

\end{bmatrix} -\underline{\hat{ j}} \begin{bmatrix} 

-0.42 & 0 \\ 

0 & 0 

\end{bmatrix}+\underline{\hat{k}} \begin{bmatrix} 

-0.42 & 0 \\ 

0 & -7.5 

\end{bmatrix}\\\underline{M}_B=(\underline{\hat{i}}(

0)-\hat{ j}(0)+\underline{\hat{k}}(-0.42\cdot -7.5-0\

cdot 0))ft\cdot lb\\\underline{M}_B=3.15\

underline{\hat{k}} ft\cdot lb$$ 

Add MA and MB to get M: 

$$\underline{M}=\underline{M}_A+\underline{M}_B

\\\underline{M}=3.15ft\cdot lb+3.15ft\cdot 

lb\\\underline{M}=6.3\underline{\hat{k}}ft\cdot lb$$ 

6. Review 

This answer makes sense because there is only 

moment acting in the k direction. 

Note: we could have come to the same answer using 

the formula M = F*d, which would have been faster. 

$$M=f\cdot d\\M=7.5lb\cdot 

10in(\frac{1ft}{12in})\\M=7.5lb\cdot 

\frac{5}{6}ft\\\\M=6.25ft\cdot lb$$ 

This answer is slightly more accurate, because we 

didn’t round when converting between inches and feet 

(in the original solution, we rounded 0.416667 to 0.42). 
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Source: 
https://
www.m
axpixel.
net/
photo-5
76088 

Example 3.6.3: Distributed Load, Submitted 
by Luciana Davila 

1. Problem 

A shelf on the wall is 1.5 meters away from 

the floor. The shelf has a length of 100 cm. A 

person starts putting different objects on it 

to create a distributed load. The load created 

a curve described by: 

w = 4x4 +2 N/m. 

Calculate the resultant force and how far it 

is acting from the wall. 

Shelf, Floating, Bathroom, Glass, 

Interior, Decor 
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2. Draw 

Sketch: 

Free-body diagram: 
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3. Knowns and Unknowns 

Knowns: 

• w = 4x4 + 2 N/m 

• L = 100 cm 

• xmin = 0 

• xmax = 1 

Unknowns: xr, Fr 

4. Approach 

Use distributed load equations: 

$$F_r=\int^{xmax}_{xmin} 

wdx\\X_r=\frac{\int^{xmax}_{xmin} 

x*w(x)*dx}{\int^{xmax}_{xmin}wdx}$$ 

5. Analysis 

Solve for Fr: 

$$ F_r=\int^1_0 (4x^4+2)dx\;\; 

N\\F_r=(\frac{4x^5}{5}+2x)\vert^1_0\;\;N\\F_r=(\f

rac{4}{5}+2)N\\F_r=2.8N$$ 

Solve for xr: 

$$X_r=\frac{(\int^1_0x(4x^4+2)dx)N/

m}{\int^1_0(4x^4+2)dx)N}\\X_r=\frac{\int^1_0(4x^

5+2x)dxN/

m}{2.8N}\\X_r=\frac{(\frac{4x^6}{6}+\frac{2x^2}{2})\

vert^1_0N/m}{2.8N}\\X_r=\frac{(\frac{2}{3}+1)N/

m}{2.8N}\\X_r=0.59m$$ 

6. Review 

The function shows an increasing curve on the 

interval, so it makes sense that the resultant force would 
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be applied closer to the right end of the beam than the 

left end. 
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CHAPTER 4: RIGID BODIES 

This is arguably the most fundamental chapter for Statics. Learn 

these concepts and the next two chapters will make a lot of sense. 

Without this chapter, the next chapters will be much more 

confusing. When people talk about Statics, this chapter contains the 

concepts they are talking about. You will use free-body diagrams 

and the equilibrium equations in many other courses. Here are the 

sections in this Chapter: 

◦ 4.1 External Forces – Types of external forces 

◦ 4.2 Rigid Body Free Body Diagrams – How to model 

problems to be able to solve them ** very important 

section 

◦ 4.3 Rigid Body Equilibrium Equations – How to apply what 

you learned on particles to rigid bodies 

◦ 4.4 Friction and Impending Motion – Special cases of an 

external force looking at slipping and tipping 

◦ 4.5 Examples  – Examples from your peers 

Here are the important equations for this chapter. 
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4.1 External Forces 

When we say ‘forces’ in Statics, we are generally talking about 

external forces (such as the reaction forces discussed in the 

previous chapter) and internal forces (that we will discuss in 

Chapter 5 and 6). Generally, external forces include: 

• gravitational force (or weight) 

• normal force 

• frictional force 

• spring force 

• applied force (such as reaction forces & tension) – this also 

includes applied moments such as from motors 

In science class you probably learned about the fundamental forces 

of nature: gravitational, electromagnetic, and weak and strong 

nuclear forces. Normal force, friction, spring, and applied forces 

are all types of electromagnetic forces. The charged and neutral 

particles attract or repel each other. For example, the reason your 

laptop doesn’t fall through the table is that the electrons in the 

atoms of the two objects are repelling each other, and both objects 

are being pulled down by another fundatmental force: gravitational 

force. See this page for more information. The four fundamental 

forces are beyond the scope of this Statics class, but ti’s important 

to know the background how the external forces operate. In this 

class, we’ll use our understanding of the the external forces to learn 

how to quantify the forces and calculate the value of other forces. 

To calculate each force individually, use the following equations: 

• Gravity: Fg = mg 

• Normal: Calculated 

• Friction: Ff = mN 

• Spring: FS = -kx 

• Applied: Measured or calculated 
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Forces are given many names, such as push, pull, 

thrust, and weight. Traditionally, forces have been 

grouped into several categories and given names 

relating to their source, how they are transmitted, or 

their effects. Several of these categories are discussed in 

this section. 

Normal Force 

Weight (also called the force of gravity) is a pervasive 

force that acts at all times and must be counteracted to 

keep an object from falling. You must support the 

weight of a heavy object by pushing up on it when you 

hold it stationary. But how do inanimate objects like a 

table support the weight of a mass placed on them, such 

as shown in the figure below? When the bag of dog food 

is placed on the table, the table sags slightly under the 

load. This would be noticeable if the load were placed on 

a card table, but even a sturdy oak table deforms when a 

force is applied to it. Unless an object is deformed 

beyond its limit, it will exert a restoring force much like 

a deformed spring (or a trampoline or diving board). The 

greater the deformation, the greater the restoring force. 

Thus, when the load is placed on the table, the table 

sags until the restoring force becomes as large as the 

weight of the load. At this point, the net external force 

on the load is zero. That is the situation when the load is 
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stationary on the table. The table sags quickly and the 

sag is slight, so we do not notice it. But it is similar to 

the sagging of a trampoline when you climb onto it. 

We must conclude that whatever supports a load, be 

it animate or not, must supply an upward force equal to 

the weight of the load, as we assumed in a few of the 

previous examples. If the force supporting the weight of 

an object, or a load, is perpendicular to the surface of 

contact between the load and its support, this force is 
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defined as a normal force and here is given by the 

symbol [latex]\vec N[/latex] N→." role="presentation" 

style="font-family: proxima-nova, sans-serif;padding: 

1px 0px;margin: 0px;font-size: 17.44px;vertical-align: 

baseline;background: #ffffff;border: 0px;line-height: 

0;text-indent: 0px;text-align: left;text-transform: 

none;font-style: normal;font-weight: 400;letter-spacing: 

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;color: 

#373d3f"> . (This is not the newton unit for force, N.) 

The word normal means perpendicular to a surface. This 

means that the normal force experienced by an object 

resting on a horizontal surface can be expressed in 

vector form as follows: 

$$\vec N=-m\vec g$$ 

In scalar form, this becomes: 

$$N=mg$$ 

The normal force can be less than the object’s weight 

if the object is on an incline. 

When an object rests on an incline that makes an 

angle θ θ" role="presentation" style="font-family: 

proxima-nova, sans-serif;padding: 1px 0px;margin: 

0px;font-size: 17.44px;vertical-align: 

baseline;background: #ffffff;border: 0px;line-height: 

0;text-indent: 0px;text-align: left;text-transform: 

none;font-style: normal;font-weight: 400;letter-spacing: 

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;color: 

#373d3f">with the horizontal, the force of gravity acting 
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on the object is divided into two components: a force 

acting perpendicular to the plane, wywy" 

role="presentation" style="font-family: proxima-nova, 

sans-serif;padding: 1px 0px;margin: 0px;font-size: 

17.44px;vertical-align: baseline;background: 

#ffffff;border: 0px;line-height: 0;text-indent: 0px;text-

align: left;text-transform: none;font-style: normal;font-

weight: 400;letter-spacing: normal;float: none;direction: 

ltr;max-width: none;max-height: none;min-width: 

0px;min-height: 0px;color: #373d3f">, and a force 

acting parallel to the plane, wx. The normal force 

[latex]\vec N[/latex] N→." role="presentation" 

style="font-family: proxima-nova, sans-serif;padding: 

1px 0px;margin: 0px;font-size: 17.44px;vertical-align: 

baseline;background: #ffffff;border: 0px;line-height: 

0;text-indent: 0px;text-align: left;text-transform: 

none;font-style: normal;font-weight: 400;letter-spacing: 

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;color: 

#373d3f"> is typically equal in magnitude and 

opposite in direction to the perpendicular component of 

the weight wy. The force acting parallel to the plane, wx, 

causes the object to accelerate down the incline. 
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Be careful when resolving the weight of the object 

into components. If the incline is at an angle θ θ" 

role="presentation" style="font-family: proxima-nova, 

sans-serif;padding: 1px 0px;margin: 0px;font-size: 

17.44px;vertical-align: baseline;background: 

#ffffff;border: 0px;line-height: 0;text-indent: 0px;text-

align: left;text-transform: none;font-style: normal;font-

weight: 400;letter-spacing: normal;float: none;direction: 

ltr;max-width: none;max-height: none;min-width: 

0px;min-height: 0px;color: #373d3f">to the horizontal, 

then the magnitudes of the weight components are: 

$$w_x=w\sin\theta=mg\sin\theta$$ 

and 

$$w_y=w\cos\theta=mg\cos\theta$$ 

We use the second equation to write the normal force 

experienced by an object resting on an inclined plane: 

$$N=mg\cos\theta$$ 

Instead of memorizing these equations, it is helpful to 

be able to determine them from reason. To do this, we 

draw the right angle formed by the three weight 
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vectors. The angle θ θ" role="presentation" style="font-

family: proxima-nova, sans-serif;padding: 1px 

0px;margin: 0px;font-size: 17.44px;vertical-align: 

baseline;background: #ffffff;border: 0px;line-height: 

0;text-indent: 0px;text-align: left;text-transform: 

none;font-style: normal;font-weight: 400;letter-spacing: 

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;color: 

#373d3f">of the incline is the same as the angle formed 

between w and wy. Knowing this property, we can use 

trigonometry to determine the magnitude of the weight 

components: 

$$\cos\theta=\frac{w_y}{w},\:w_y=w\cos\

theta=mg\cos\theta\\\sin\

theta=\frac{w_z}{w},\:w_x=w\sin\theta=mg\sin\

theta$$ 

Tension 

A tension is a force along the length of a medium; in 

particular, it is a pulling force that acts along a stretched 

flexible connector, such as a rope or cable. The word 

“tension” comes from a Latin word meaning “to stretch.” 

Not coincidentally, the flexible cords that carry muscle 

forces to other parts of the body are called tendons. 

Any flexible connector, such as a string, rope, chain, 

wire, or cable, can only exert a pull parallel to its length; 

thus, a force carried by a flexible connector is a tension 

with a direction parallel to the connector. Tension is a 
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pull in a connector. Consider the phrase: “You can’t push 

a rope.” Instead, tension force pulls outward along the 

two ends of a rope. 

Consider a person holding a mass on a rope. If the 

5.00-kg mass in the figure is stationary, then its 

acceleration is zero and the net force is zero. The only 

external forces acting on the mass are its weight and the 

tension supplied by the rope. Thus, 

$$F_{net}=T-w=0$$ 

where T and w are the magnitudes of the tension and 

weight, respectively, and their signs indicate direction, 

with up being positive. As we proved using Newton’s 

second law, the tension equals the weight of the 

supported mass: 

$$T=w=mg$$ 

Thus, for a 5.00-kg mass (neglecting the mass of the 

rope), we see that 

$$T=mg=(5.00kg)(9.80m/s^2)=49.0N$$ 

If we cut the rope and insert a spring, the spring 

would extend a length corresponding to a force of 49.0 

N, providing a direct observation and measure of the 

tension force in the rope. 
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Flexible connectors are often used to transmit forces 

around corners, such as in a hospital traction system, a 

tendon, or a bicycle brake cable. If there is no friction, 

the tension transmission is undiminished; only its 

direction changes, and it is always parallel to the flexible 

connector, as shown below: 

If we wish to create a large tension, all we have to do 

is exert a force perpendicular to a taut flexible 

connector. We can see that the tension in the rope is 

related to the force acting perpendicularly in the 

following way: 

$$T=\frac{w}{2\sin\theta}$$ 

We can extend this expression to describe the 

tension T created when a perpendicular force (F⊥) is 

exerted at the middle of a flexible connector: 

$$T=\frac{F\perp}{2\sin\theta}$$ 

The angle between the horizontal and the bent 

connector is represented by θ. In this case, T becomes 

large as θ approaches zero. Even the relatively small 

weight of any flexible connector will cause it to sag, 

since an infinite tension would result if it were 
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horizontal (i.e., θ=0 and sin θ=0). For example, the image 

below shows a situation where we wish to pull a car out 

of the mud when no tow truck is available. Each time the 

car moves forward, the chain is tightened to keep it as 

straight as possible. The tension in the chain is given 

by[latex]T=\frac{F\perp}{2\sin\theta}[/latex] and 

since θ is small, T is large. This situation is analogous to 

the tightrope walker, except that the tensions shown 

here are those transmitted to the car and the tree 

rather than those acting at the point where F⊥ is 

applied. 

Friction 

Friction is a resistive force opposing motion or its 

tendency. Imagine an object at rest on a horizontal 

surface. The net force acting on the object must be zero, 

leading to equality of the weight and the normal force, 

which act in opposite directions. If the surface is tilted, 

the normal force balances the component of the weight 

perpendicular to the surface. If the object does not slide 

downward, the component of the weight parallel to the 

inclined plane is balanced by friction. Friction is 

discussed in greater detail in the next chapter. 
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Spring Force 

A spring is a special medium with a specific atomic 

structure that has the ability to restore its shape, if 

deformed. To restore its shape, a spring exerts a 

restoring force that is proportional to and in the 

opposite direction in which it is stretched or 

compressed. This is the statement of a law known as 

Hooke’s law, which has the mathematical form 

$$\vec F=-k\vec x$$ 

The constant of proportionality k is a measure of the 

spring’s stiffness. The line of action of this force is 

parallel to the spring axis, and the sense of the force is 

in the opposite direction of the displacement vector. 

The displacement must be measured from the relaxed 

position; x=0 when the spring is relaxed. 
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Source: University Physics Volume 1, Openstax CNX. 

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/5-6-common-forces/ 
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Key Takeaways 

• Basically: External forces include: gravitational, 

applied, normal, frictional, and spring. 

• Application: Everything. A book on a table, Tigger 

bouncing on his tail, a shooting star, and a soccer ball 

rolling into the goal. 

• Looking Ahead: Ch 5 and 6 will look at internal 

forces. Section 4.3 will use the known forces to 

calculate the unknown forces. Section 4.2 will model 

the forces on a diagram. 
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4.2 Rigid Body Free Body 
Diagrams 

Following what we learned in Section 2.2 on particle Free-Body 

Diagrams (FBDs), this section will expand on that for rigid bodies. 

The biggest difference between a particle and rigid body FBD is 

where the force is applied. In a rigid body FBD, you have to be 

precise about pointing the head of the force arrow to the location 

where it applied. For example. if we wanted to make a FBD of you 

and me high-5’ing, you would apply the force from your hand onto 

my hand, not at my center of mass. 

In this section, first we will learn how to do a FBD for a part, then 

we look at how to model a system of multiple objects. 

4.2.1 Part FBD 

When modelling a single object using an FBD, you are simplifying 

a complex problem into specific forces using arrows and an object 

floating in space. The floor becomes a normal force arrow and a 

frictional force arrow. Pushing or pulling on an object becomes an 

applied force with the arrow pointing to or from (pushing or pulling) 

the location where the pushing or pulling occurs. Remember the 

rules from section 2.2 still apply: 

• Add coordinate frame (which way is positive x and positive y?) 

• Replace surfaces with forces ( floor, hand, and objects touching 

it become arrows) 

• Point forces in the correct direction (the head of the arrow 

points to where the force acts. FG acts down) 

• Use unique (different) names (be sure to name each force with a 
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different name). 

Here are some tips to keep in mind about each of the forces: 

• Gravity acts on every particle in an object. Because we don’t 

want a million little arrows on the object, we sum the effect of 

gravity at the center of mass. This is also because we generally 

know the total mass of something and where that occurs on an 

object (often at the geometric center), so we concentrate the 

force of gravity at this center of mass. 

• Normal forces always act perpendicular to the surface, so if the 

ground is at an angle, then the normal force acts 90 degrees 

from that angle (perpendicular). 

• Frictional forces act parallel to the plane between the two 

surfaces. This makes it a shear force, which we’ll look at in 

Chapter 6. 

• Friction always opposes motion, a fact that will be very 

important in your dynamics class. 

• Spring force is often shown as negative because the force acts 

in the opposite direction of the motion traveled. In application, 

you set the direction of the frictional force to match if it is 

pushing or pulling. 

• Applied forces (and moments), such as distributed loads, 

motors, pushing on an object, tension, etc. 

The steps to make a FBD are: 

1. Draw shape 

2. Add coordinate frame 

3. Replace forces with arrows 

4. Label each force uniquely 

To model a book being pushed across the table, you would apply the 

following forces at the following locations (see image below) 

• the normal force on the bottom of the book (green arrow) 
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• the frictional force running along the bottom surface between 

the book and table (yellow arrow) 

• the gravitational force acting at the center of mass (pink arrow) 

• any applied force at the point of application, such as your hand 

pushing on the book (blue arrow) 

If instead, the book were being pulled by a string, the image would 

be the same but the applied force and frictional force would change 

direction (because friction always opposes motion). 
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A free body diagram is a tool used to solve 

engineering mechanics problems. As the name suggests, 

the purpose of the diagram is to “free” the body from all 

other objects and surfaces around it so that it can be 

studied in isolation. We will also draw in any forces or 

moments acting on the body, including those forces and 

moments exerted by the surrounding bodies and 

surfaces that we removed. 

The diagram below shows a ladder supporting a 

person and the free body diagram of that ladder. As you 

can see, the ladder is separated from all other objects 

and all forces acting on the ladder are drawn in with key 

dimensions and angles shown. 
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The first step in solving most mechanics problems will 

be to construct a free body diagram. This simplified 

diagram will allow us to more easily write out the 

equilibrium equations for statics or strengths of 

materials problems, or the equations of motion for 

dynamics problems. 

To construct the diagram we will use the following 

process. 

1. First draw the body being analyzed, separated 

from all other surrounding bodies and surfaces. 

Pay close attention to the boundary, identifying 

what is part of the body, and what is part of the 

surroundings. 

2. Second, draw in all external forces and 

moments acting directly on the body. Do not 

include any forces or moments that do not 

directly act on the body being analyzed. Do not 

4.2 Rigid Body Free Body Diagrams  |  235



include any forces that are internal to the body 

being analyzed. Some common types of forces 

seen in mechanics problems are: 

◦ Gravitational Forces: Unless otherwise 

noted, the mass of an object will result in a 

gravitational weight force applied to that 

body. This weight is usually given in pounds 

in the English system, and is modeled as 9.81 

(g) times the mass of the body in kilograms 

for the metric system (resulting in a weight 

in Newtons). This force will always point 

down towards the center of the earth and 

act on the center of mass of the body.

▪ Normal Forces (or Reaction 
Forces): Every object in direct contact 

with the body will exert a normal force 

on that body which prevents the two 

objects from occupying the same 

space at the same time. Note that only 

objects in direct contact can exert 

normal forces on the body. 

▪ An object in contact with 
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another object or surface will 

experience a normal force that 

is perpendicular (hence normal) 

to the surfaces in contact.

▪ Joints or connections between 

bodies can also cause reaction 

forces or moments, and we will 

have one force or moment for 

each type of motion or rotation 

the connection prevents.

▪ Friction Forces: Objects in direct 

contact with the body can also exert 

friction forces on the body, which will 

resist the two bodies sliding against 
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one another. These forces will always 

be perpendicular to the surfaces in 

contact. Friction is the subject of an 

entire chapter in this book, but for 

simple scenarios we usually assume 

rough or smooth surfaces. 

▪ For smooth surfaces we 

assume that there is no friction 

force. 

▪ For rough surfaces we assume 

that the bodies will not slide 

relative to one another no 

matter what. In this case the 

friction force is always just large 

enough to prevent this sliding.

▪ Tension in Cables: Cables, wires or 

ropes attached to the body will exert a 

tension force on the body in the 

direction of the cable. These forces 

will always pull on the body, as ropes, 

cables and other flexible tethers 
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cannot be used for pushing. 

▪ The above forces are the most 

common, but other forces such as 

pressure from fluids, spring forces and 

magnetic forces may exist and may act 

on the body. 

3. Once the forces are identified and added to the 

free body diagram, the last step is to label any key 

dimensions and angles on the diagram. 

Source: Engineering Mechanic, Jacob Moore, et al. 

http://wwhttp://mechanicsmap.psu.edu/websites/

1_mechanics_basics/1-6_free_body_diagrams/

free_body_diagrams.htmlw.oercommons.org/courses/

mechanics-map-open-mechanics-textbook/view 

 

4.2.2 System FBD 

A system free-body diagram is composed of multiple parts, so you 

can have multiple ‘levels’ to consider: the system level with all 

objects on the same FBD, and a part FBD for each individual part. 
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This is especially helpful if you have a more unknowns than 

equations when using the equilibrium equations, so you can find 

more information by splitting the system up into individual parts. 

For the system FBD, you look at the parts combined together 

and add only the external forces (gravity, applied, normal, frictional, 

spring). When you look at each part separately, you now have to 

include the interaction between the objects, replacing a part with 

forces (generally 2 forces: vertical and horizontal force). 

For example, if there are 2 books stacked on top of each other, you 

now need 3 FBDs: 

1. a system level FBD with both books, 

2. a part FBD for the bottom book with the top book replaced by 

arrows (forces) 

3. a part FBD for the top book with the bottom book replaced by 

arrows (forces) 

 

To make a system FBD: 

1. Draw system FBD using unique consistent labels (ie. a letter or 

number per part) 
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◦ The system should be floating in space with no surface 

(such as the floor) 

◦ Include coordinate frame 

◦ Use only external forces on system FBD (gravity, applied, 

normal, frictional, spring). 

◦ DO NOT include internal forces 

◦ It is especially important to use unique labels, so the top 

book forces are labelled 1, and the bottom book forces are 

labelled 2 (or T for top and B for bottom, or A and B). 

2. Draw a FBD for each part separately & coord frame with equal 

and opposite arrows for internal system forces 

◦ The part should be floating in space with no surfaces or 

other objects 

◦ Include a coordinate frame (yes, again! This is to ensure 

you didn’t rotate the object). 

◦ Copy the external forces onto the part FBD from the 

system FBD with the identical labels and arrow directions 

◦ Now add internal forces replacing the other object with 

force arrows (red arrows) 

◦ When you draw the second part FBD, follow the above 

bullets for the second object (with label 2 instead of 1, 

copying the system level external force labels). Note 

though that you use the same labels for the internal forces 
from the first part FBD, but the direction is reversed (left 

becomes right and up becomes down). Following Newton’s 

laws, the objects extert equal and opposite forces on each 

other, and should cancel out at the system level, so they 

have the same label (magnitude) and opposite directions. 

Some tips: 

• Differentiate one object from the other through the labels, 

using either a letter or number for each part. These same 
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labels go on the system level FBD (except for the internal 

labels). 

• Use the same labels between the part and system FBDs for 

external forces. Don’t change the label – that will make the 

equations impossible to solve and look like you have more 

unknowns. 

• Use the same unique labels between the internal forces for the 

part FBDs, but in the opposite direction. 

• If you know the location of the center of mass, you could 

combine the gravitational forces into 1 system level 

gravitational force. You could also model the gravitational force 

into one force per part acting at the center of mass for each 

object. This is the better method if you have to separate the 

objects to do the calculations. 

 

4.2.3 Examples 

Here are some examples from: http://mechanicsmap.psu.edu/

websites/1_mechanics_basics/1-6_free_body_diagrams/

free_body_diagrams.html 

Example 1: Part FBD 

The car shown below is moving and then slams on the 
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brakes locking up all four wheels. The distance between 

the two wheels is 8 feet and the center of mass is 3 feet 

behind and 2.5 feet above the point of contact between 

the front wheel and the ground. Draw a free body 

diagram of the car as it comes to a stop. 
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Source: Engineering Mechanics, Jacob Moore et al., 

http://mechanicsmap.psu.edu/websites/

1_mechanics_basics/1-6_free_body_diagrams/pdf/

P3.pdf 

 

244  |  Statics

http://mechanicsmap.psu.edu/websites/1_mechanics_basics/1-6_free_body_diagrams/pdf/P3.pdf
http://mechanicsmap.psu.edu/websites/1_mechanics_basics/1-6_free_body_diagrams/pdf/P3.pdf
http://mechanicsmap.psu.edu/websites/1_mechanics_basics/1-6_free_body_diagrams/pdf/P3.pdf


Example 2: Part FBD (a beam) 

 

Imaged adapted. Source: Engineering Mechanics, 

Jacob Moore, et al. http://mechanicsmap.psu.edu/

websites/4_statically_equivalent_systems/

4-1_statically_equivalent_systems/images/

equivalentexample.png 
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Example 3: System FBD 

Two equally sized barrels are being transported in a 

hand truck as shown below. Draw a free body diagram of 

each of the two barrels. 

 

Source: Engineering Mechanics, Jacob Moore et al., 

http://mechanicsmap.psu.edu/websites/

1_mechanics_basics/1-6_free_body_diagrams/pdf/

P2.pdf 

 

External forces in green, pink, and yellow. Internal forces between 
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the cart and barrels (C and A/B) in red and between the barrels 

(A & B) in blue. Notice the matching labels for internal forces but 

opposing directions. Notice that the coordinate frame has been 

rotated consistently in all of the FBDs. 

 

Key Takeaways 

Basically: A part free-body diagrams (FBDs) give you a 

way to model complicated problem in a simple way with 

arrows. Systems FBDs allows you to combine objects and 

analyze them separately. 

Application: A bat swinging could be modeled as a part 

FBD with gravity and multiple applied forces (hands on one 

end and the ball on the other). You could model the 
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moment the bat and ball are touching using a system FBD. 

Looking ahead: You’ll use a FBD in every step 2 in nearly 

every homework problem. These are especially helpful with 

Equilibrium Equations in the next section. 
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4.3 Rigid Body Equilibrium 
Equations 

We use the equilibrium equations to calculate any unknown forces 

& moments using the known forces and values, and the following 

equations: 

The particle equilibrium equations were covered in section 2.3. 

These are: 

$$ 

\Sigma F_{x}=0, \Sigma F_{y}=0, \Sigma F_{z}=0 

$$ 

Now for a rigid body where forces are analyzed at different points 

on a body, we can take moments into account. There are 3 equations 

for 2d and 4 equations for 3d: 

Rigid Body-Two Dimensions 

$$ 

\Sigma F_{x}=0, \Sigma F_{y}=0, \Sigma M_{O}=0 

$$ 

Rigid Body-Three Dimensions 

$$ 

\begin{gathered} 

\Sigma F_{x}=0, \Sigma F_{y}=0, \Sigma F_{z}=0 \\ 

\Sigma M_{x^{\prime}}=0, \Sigma M_{y^{\prime}}=0, \Sigma 

M_{z^{\prime}}=0 

\end{gathered} 

$$ 

Because these are static bodies, the right side of the equations 

equal 0. In dynamics, they will equal the mass times the acceleration 

for translation and rotation. 
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For a rigid body in static equilibrium, that is a non-

deformable body where forces are not concurrent, the 

sum of both the forces and the moments acting on the 

body must be equal to zero. The addition of moments 

(as opposed to particles where we only looked at the 

forces) adds another set of possible equilibrium 

equations, allowing us to solve for more unknowns as 

compared to particle problems. 

Moments, like forces, are vectors. This means that our 

vector equation needs to be broken down into scalar 

components before we can solve the equilibrium 

equations. In a two dimensional problem, the body can 

only have clockwise or counter clockwise rotation 

(corresponding to rotations about the z axis). This 

means that a rigid body in a two dimensional problem 

has three possible equilibrium equations; that is, the 

sum of force components in the x and y directions, and 

the moments about the z axis. The sum of each of these 

will be equal to zero. 

For a two dimensional problem, we break our one 

vector force equation into two scalar component 

equations. 

$$\sum\vec F=0\\\sum F_x=0\:\sum F_y=0$$ 

The one moment vector equation becomes a single 

moment scalar equation. 

$$\sum\vec M=0\\\sum M_z=0$$ 

If we look at a three dimensional problem we will 

increase the number of possible equilibrium equations 

to six. There are three equilibrium equations for force, 
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where the sum of the components in the x, y, and z 

direction must be equal to zero. The body may also have 

moments about each of the three axes. The second set 

of three equilibrium equations states that the sum of the 

moment components about the x, y, and z axes must 

also be equal to zero. 

We break the forces into three component equations 

$$\sum\vec F=0\\\sum F_x=0\:\sum 

F_y=0\:\sum F_z=0$$ 

We break the moments into three component 

equations 

$$\sum\vec M=0\\\sum M_x=0\:\sum 

M_y=0\:\sum M_z=0$$ 

Finding the Equilibrium Equations: 

As with particles, the first step in finding the 

equilibrium equations is to draw a free body diagram of 

the body being analyzed. This diagram should show all 

the force vectors acting on the body. In the free body 

diagram, provide values for any of the known 

magnitudes, directions, and points of application for the 

force vectors and provide variable names for any 

unknowns (either magnitudes, directions, or distances). 

Next you will need to choose the x, y, z axes. These 

axes do need to be perpendicular to one another, but 

they do not necessarily have to be horizontal or vertical. 
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If you choose coordinate axes that line up with some of 

your force vectors you will simplify later analysis. 

Once you have chosen axes, you need to break down 

all of the force vectors into components along the x, y 

and z directions (see the vectors page in Appendix 1 

page for more details on this process). Your first 

equation will be the sum of the magnitudes of the 

components in the x direction being equal to zero, the 

second equation will be the sum of the magnitudes of 

the components in the y direction being equal to zero, 

and the third (if you have a 3D problem) will be the sum 

of the magnitudes in the z direction being equal to zero. 

Next you will need to come up with the the moment 

equations. To do this you will need to choose a point to 

take the moments about. Any point should work, but it is 

usually advantageous to choose a point that will 

decrease the number of unknowns in the equation. 

Remember that any force vector that travels through a 

given point will exert no moment about that point. To 

write out the moment equations simply sum the 

moments exerted by each force (adding in pure 

moments shown in the diagram) about the given point 

and the given axis (x, y, or z) and set that sum equal to 

zero. All moments will be about the z axis for two 

dimensional problems, though moments can be about x, 

y and z axes for three dimensional problems. 

Once you have your equilibrium equations, you can 

solve these formulas for unknowns. The number of 

unknowns that you will be able to solve for will again be 

the number or equations that you have. 
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Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/

3_equilibrium_rigid_body/

3-6_equilibrium_equations_rigid_body/

equilibrium_equations_rigid_body.html 

 

Here is a visual example of using the equilibrium equations: 

Source: Engineering Mechanics, Jacob Moore, et al. 
http://mechanicsmap.psu.edu/websites/4_statically_equivalent_systems/
4-1_statically_equivalent_systems/images/equivalentexample.png 

If we only consider the y (vertical) direction, the 200 lbs pushing 

down on the beam must be balanced by the reaction forces pushing 

4.3 Rigid Body Equilibrium Equations  |  253

http://mechanicsmap.psu.edu/websites/3_equilibrium_rigid_body/3-6_equilibrium_equations_rigid_body/equilibrium_equations_rigid_body.html
http://mechanicsmap.psu.edu/websites/3_equilibrium_rigid_body/3-6_equilibrium_equations_rigid_body/equilibrium_equations_rigid_body.html
http://mechanicsmap.psu.edu/websites/3_equilibrium_rigid_body/3-6_equilibrium_equations_rigid_body/equilibrium_equations_rigid_body.html
http://mechanicsmap.psu.edu/websites/3_equilibrium_rigid_body/3-6_equilibrium_equations_rigid_body/equilibrium_equations_rigid_body.html


up. The two reaction forces are equivalent because the forces on 

top are balanced evenly between the reaction forces. If they are at 

different locations, we use the sum of the moments equation and 

the distances of the people to determine the size of the reaction 

forces. 

Example 1: 

The car below has a mass of 1500 lbs with the center 

of mass 4 ft behind the front wheels of the car. What are 

the normal forces on the front and the back wheels of 

the car? 
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Source: Engineering Mechanics, Jacob Moore et al., 

http://mechanicsmap.psu.edu/websites/

3_equilibrium_rigid_body/

3-6_equilibrium_equations_rigid_body/pdf/

EquilibriumEquationsExtended_WorkedProblem1.pdf 
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Example 2: 

While sitting in a chair, a person exerts the forces in 

the diagram below. Determine all forces acting on the 

chair at points A and B. (Assume A is frictionless and B is 

a rough surface). 
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Source: Engineering Mechanics, Jacob Moore et al., 

http://mechanicsmap.psu.edu/websites/

3_equilibrium_rigid_body/

3-6_equilibrium_equations_rigid_body/pdf/

EquilibriumEquationsExtended_WorkedProblem5.pdf 
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Key Takeaways 

Basically: The equilibrium equations for rigid bodies are a 

way to determine unknown forces and moments using 

known forces and moments, separating the motion in 2 (or 

3) directions for translation and rotation. Moments could 

be calculated because rigid bodies also consider shape and 

length. 

Application: Calculate the reaction forces from the 

combined weight of an object. 

Looking Ahead: This method will be used extensively in 

Ch 5 and 6. 
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4.4 Friction and Impending 
Motion 

Dry Friction 

Dry friction is the force that opposes one solid 

surface sliding across another solid surface. Dry friction 

always opposes the surfaces sliding relative to one 

another and can have the effect of either opposing 

motion or causing motion in bodies. 

The most commonly used model for dry friction 

is coulomb friction. This type of friction can further be 

broken down into static friction and kinetic friction. 

These two types of friction are illustrated in the diagram 

below. First imagine a box sitting on a surface. A pushing 

force is applied parallel to the surface and is constantly 

being increased. A gravitational force, a normal force, 

and a frictional force are also acting on the box. 

4.4 Friction and Impending
Motion  |  259



Static friction occurs prior to the box slipping and 

moving. In this region the friction force will be equal in 

magnitude and opposite in direction to the pushing 

force itself. As the magnitude of the pushing force 

increases so does the magnitude of the friction force. 

If the magnitude of the pushing force continues to 

rise, eventually the box will begin to slip. As the box 

begins to slip the type of friction opposing the motion of 

the box changes from static friction to what is called 

kinetic friction. The point just before the box slips is 

known as impending motion. This can also be thought 

of as the maximum static friction force before slipping. 

The magnitude of the maximum static friction force is 

equal to the static coefficient of friction times the 

normal force existing between the box and the surface. 

This coefficient of friction is a property that depends on 

both materials and can usually be looked up in tables. 

Kinetic friction occurs beyond the point of 

impending motion when the box is sliding. With kinetic 
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friction, the magnitude of the friction force opposing 

motion will be equal to the kinetic coefficient of friction 

times the normal force between the box and the 

surface. The kinetic coefficient of friction also depends 

upon the two materials in contact, but will almost 

always be less than the static coefficient of friction. 

Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/7_friction/

7-1_dry_friction/dryfriction.html 

Slipping vs. Tipping 

Imagine a box sitting on a rough surface as shown in 

the figure below. Now imagine that we start pushing on 

the side of the box. Initially the friction force will resist 

the pushing force and box will sit still. As we increase 

the force pushing the box however, one of two things 

will occur. 

1. The pushing force will exceed the maximum 

static friction force and the box will begin to slide 

across the surface (slipping). 

2. Or, the pushing force and the friction force will 

create a strong enough couple that the box will 

rotate and fall on it’s side (tipping). 
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When we look at cases where either slipping or 

tipping may occur, we are usually interested in finding 

which of the two options will occur first. To determine 

this, we usually determine both the pushing force 

necessary to make the body  and the pushing force 

necessary to make the body tip over. Whichever option 

requires less force is the option that will occur first. 

Determining the Force Required to Make an Object 
“Slip”: 

A body will slide across a surface if the pushing force 

exceeds the maximum static friction force that can exist 

between the two surfaces in contact. As in all dry 

friction problems, this limit to the friction force is equal 

to the static coefficient of friction times the normal 

force between the body. If the pushing force exceeds 

this value then the body will slip. 
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Determining the Force Required to Make an Object 
“Tip”: 

The normal forces supporting bodies are distributed 

forces. These forces will not only prevent the body from 

accelerating into the ground due to gravitational forces, 

but they can also redistribute themselves to prevent a 

body from rotating when forces cause a moment to act 

on the body. This redistribution will result in the 

equivalent point load for the normal force shifting to 

one side or the other. A body will tip over when the 

normal force can no longer redistribute itself any 

further to resist the moment exerted by other forces 

(such as the pushing force and the friction force). 
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The easiest way to think about the shifting normal 

force and tipping is to imagine the equivalent point load 

of the distributed normal force. As we push or pull on 

the body, the normal force will shift to the left or right. 

This normal force and the gravitational force create a 

couple that exerts a moment. This moment will be 

countering the moment exerted by the couple formed 

by the pushing force and the friction force. 

Because the normal force is the direct result of 

physical contact, we cannot shift the normal force 

beyond the surfaces in contact (aka. the edge of the 

box). If countering the moment exerted by the pushing 

force and the friction force requires shifting the normal 

force beyond the edge of the box, then the normal force 

and the gravity force will not be able to counter the 

moment and as a result the box will begin to rotate (aka. 

tip over). 
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Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/7_friction/

7-2_slipping_vs_tipping/slippingvstipping.html 

 

 

Example 1 

The box shown below is pushed as shown. If we keep increasing the 
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pushing force, will the box first begin to slide or will it tip over? 

Therefore, the box will TIP first. 

Source: Gayla Cameron. 

 

Example 2: 

A 500 lb box is sitting on concrete floor. If the static 

coefficient of friction is .7 and the kinetic coefficient of 

friction is .6: 

• What is the friction force if the pulling force is 

150 lbs? 

• What pulling force would be required to get the 

box moving? 

• What is the minimum force required to keep the 

box moving once it has started moving? 
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Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/7_friction/

7-1_dry_friction/pdf/

DryFriction_WorkedExample1.pdf 

 

 

Example 3: 

A 30 lb sled is being pulled up an icy incline of 25 
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degrees. If the static coefficient of friction between the 

ice and the sled is .4 and the kinetic coefficient of 

friction is .3, what is the required pulling force needed 

to keep the sled moving at a constant rate? 
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Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/7_friction/

7-1_dry_friction/pdf/

DryFriction_WorkedExample2.pdf 
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Example 4: 

A plastic box is sitting on a steel beam. One end of the 

steel beam is slowly raised, increasing the angle of the 

surface until the box begins to slip. If the box begins to 

slip when the beam is at an angle of 41 degrees, what is 

the static coefficient of friction between the steel beam 

and the plastic box? 
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Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/7_friction/

7-1_dry_friction/pdf/

DryFriction_WorkedExample3.pdf 
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Example 5: Slipping vs Tipping 

Explanation: If it’s tipping, all of the normal force will be at the 

corner. If it starts slipping, it must overcome the static frictional 

force. Comparing the pushing force needed to tip or slip, the 

pushing force is lower to cause tipping occurs than the pushing 

force to cause slipping, there fore it will tip first. 

The box shown below is pushed as shown. If we keep 

increasing the pushing force, will the box first begin to 

slide or will it tip over? 
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Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/7_friction/

7-2_slipping_vs_tipping/pdf/

TippingVsSlipping_WorkedExample1.pdf 

 

 

Key Takeaways 

Basically: Friction always opposes motion. The coefficient 
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of static friction is always higher than the coefficient of 

kinetic friction. 

Application: Slipping and tipping are interesting cases 

looking at friction. Depending on the mass, the height of 

the applied force, and the frictional surface, you can 

calculate whether the object will tip or slip first. 

Looking Ahead: This will become important in Dynamics. 
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4.5 Examples 

Here are examples from Chapter 4 to help you understand these 

concepts better. These were taken from the real world and supplied 

by FSDE students in Summer 2021. If you’d like to submit your own 

examples, please send them to the author eosgood@upei.ca. 

Example 4.5.1: External Forces, submitted by 
Elliott Fraser 

1. Problem 

Billy (160 lbs), Bobby (180 lbs), and Joe (145 

lbs) are walking across a small bridge with a 

length of 11 feet. Both sides of the bridge are 

supported by rollers. Billy is 2 feet along the 

bridge whereas Joe is 9 feet along the bridge. 

If the maximum force that the left side of the 

bridge can withstand without failing is 225 

lbs, where along the bridge can Bobby stand? 

Real-life scenario: 
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Source: https://www.flickr.com/photos/chumlee/
48306801162/ 

2.Draw 

Sketch: 
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Free-body diagram: 

3. Knowns and Unknowns 

Known: 

• rBi = 2 ft 

• rJ = 9 ft 

• rB = 11 ft 

• FBi = 160 lb 

• FJ = 145 lb 
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• FBo = 180 lb 

• Ay = 225 lb (since this is the maximum force 

without failure) 

Note: Since the mass of the bridge was not given, we 

assume it is negligible and ignore it for this question. 

Unknown: rBo 

4. Approach 

Use equilibrium equations ( [latex]\sum\

underline{F}=0[/latex] , [latex]\sum\

underline{M}=0[/latex] . Use sum of forces in y to find 

By; use sum of moments to find where Bobby can stand. 

Solve for x. 

5. Analysis 

$$ \sum F_y=0=-F_{Bi}-F_{Bo}-

F_J+A_y+B_y\\\\B_y=F_{Bi}+F_{Bo}+F_J-

A_y\\\\B_y=160 lb+180 lb+145 lb-225 

lb\\\\\\B_y=260 lb$$ 

$$\sum M_A=0=-(F_{Bi})(r_{Bi})-(F_{Bo})(r_{Bo})-

(F_{J})(r_{J})+(B_{y})(r_{B})\\r_{bo}=\frac{-

(F_{Bi})(r_{Bi})-

(F_{J})(r_{J})+(B_{y})(r_{B})}{F_{Bo}}\\r_{Bo}=\frac{-

(160 lb)(2 ft)-(145 lb)(9 ft)+(260 lb)(11 ft)}{180 lb}$$ 

 

$$\underline{r_{Bo}=6.86 ft}$$ 

6. Review 

Bobby can stand anywhere from 6.8611 ft – 11 ft from A 
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with no problems. If Bobby were to stand between 0 ft 

and 6.811 ft, the left side of the bridge would fail. 

 

Example 4.5.2: Free-Body Diagrams, 
submitted by Victoria Keefe 

1. Problem 

A box is sitting on an inclined plane (θ = 

15°) and is being pushed down the plane with 

a force of 20 N. Draw the free body diagram 

for the box, while it is in static equilibrium. 
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2. Draw 

3. Knowns and Unknowns 

θ = 15° 

FA 

Unknowns: free-body diagram of box 

4. Approach 
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Draw the box, then draw all forces acting on it 

5. Analysis 

6. Review 

All forces acting upon the box are drawn, including 

weight/gravitational force, normal force, friction, and 

applied forces. 
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Man Kicking Box 

Icons - Download Free 

Vector Icons | Noun 

Project 
Source: 
https://static.thenounproj
ect.com/png/
2745226-200.png 

Example 4.5.3: Friction, submitted by 
Deanna Malone 

1. Problem 

A box is being 

pushed along level 

ground with a force 

of 150 N at an angle 

of 30 with the 

horizontal. The 

mass of the box is 12 

kg. 

a) What is the normal force between the 

box and the floor? 

b) What is the coefficient of friction 

between the box and the floor? 

 

2. Draw 

Sketch: 
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Free Body Diagram: 

3. Knowns and Unknowns 

Knowns: 

• FA = 150 N 

• θ = 30° 

• m = 12 kg 

Unknowns: FN, μ 
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4. Approach 

Use equilibrium equations ( [latex]\sum\

underline{F}=0[/latex] , [latex]\sum\

underline{M}=0[/latex] ), SOH CAH TOA, friction 

equation 

5. Analysis 

Part a: 

Find Fg: 

$$Fg=m\cdot g\\Fg=(12kg)(9.81m/

s^2)\\\\Fg=117.72N$$ 

Find FN using equilibrium equations: 

$$\sum Fy=0=F_N-F_g-F_A\sin 

30^{\circ}\\0=F_N-117.72N-150N\cdot \sin 

30^{\circ}\\F_N=117.72+150N\cdot\sin 

30^{\circ}\\\\\underline{F_N=192.7 N}$$ 

Part b: 

Find two equations for Ff, set equal, solve for μ 

$$\sum F_x=0=F_A\cos 30^{\circ}  -F_f\\0=150N\

cdot\cos 30^{\circ}-F_f$$ 

$$F_f=150N\cdot\cos 30^{\circ}\\F_f=M\cdot 

F_N\\150N\cdot\cos 30^{\circ}=\mu\cdot F_N$$ 

$$\mu=\frac{150N\cdot\cos 

30^{\circ}}{F_N}\\\mu=\frac{150N\cdot\cos 

30^{\circ}}{192.72N}=0.67405$$ 

 

$$\underline{\mu=0.67}$$ 

6. Review 
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FN, Fg, and the y component of FA are the only forces 

in the y direction so it makes sense that they need to 

equal zero for the equilibrium equations. FN is the only 

positive force in the y direction, so it makes sense that it 

equals the magnitude of the other two put together. 

The coefficient found between the box and the floor 

is reasonable as it is less than 1, and it’s reasonable for a 

box on the floor. For example, if the box was wood and 

the floor was wood, the coefficient of static friction 

would be anywhere from 0.5-0.7, so having a coefficient 

of friction being equal to 0.67 makes sense. 

 

Example 4.5.4: Friction, submitted by 
Dhruvil Kanani 

1. Problem 
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A person is trying to prevent a brick from 

sliding on a rough vertical surface by 

applying force in the direction of wall. 

Assuming the coefficient of static friction is 

0.49 and mass of the brick is 5 kg, 

• a) Determine the minimum force 

required to prevent the brick from 

slipping. 

• b) Find the distributed load or 

intensity if the length of the person’s 

hands from the tip of his fingers to 

their wrist is 16 cm. 
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2. Draw 

Sketch: 

Free-body diagram (box): 

Free-body diagram (distributed load): 

3. Knowns and Unknowns 

Knowns: 

• Mass of brick (m) = 5kg 

• Coefficient of friction (μ1) = 0.49 
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• Acceleration due to gravity (g) = 9.8m/s2 

• Length of the hand (L) = 16 cm 

Unknowns: 

Applied force (FA), intensity (w) 

4. Approach 

Use equilibrium equations ( [latex]\sum\

underline{F}=0[/latex] , [latex]\sum\

underline{M}=0[/latex] ), equations for Fg and Ff (see 

below). 

$$F_g=m g\\F_f=\mu F_N$$ 

5. Analysis 

Part a: 

$$F_g=m\cdot g\\F_g=5kg\cdot 9.81m/

s^2\\F_g=49.05N$$ 

 

$$\sum F_y=0=-

F_g+F_f\\F_f=F_g\\F_f=49.05N$$ 

$$F_f=\mu_1 

F_N\\F_N=\frac{F_f}{\mu_1}\\F_N=\frac{49.05N}{0

.49}$$ 

 

$$\underline{F_N=100.1N}$$ 

 

Part b: 

$$\sum F_x=0=F_N-

F_A\\F_A=F_N\\F_A=100.1N$$ 
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$$w=\frac{F}{L}\\w={100.1N}{(16cm\times\

frac{1m}{100cm})}$$ 

 

$$\underline{w=625N/m}$$ 

6. Review 

It makes sense that the applied force is larger than the 

gravitational force. It also makes sense that the normal 

and applied forces are equal, since they are the only 

forces in the x direction (same goes for the friction and 

gravitational forces). 

 

Example 4.5.5: Friction, submitted by Emma 
Christensen 

1. Problem 
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A ball is suspended by two ropes, and rests 

on an inclined surface with angle 15°. Rope A 

pulls on the ball with force 200 N, and rope B 

has force 150 N. They each have angles of 20° 

and 60° from the inclined surface plane, as 

shown in the image below. 

a) Draw a free-body diagram of the ball 

b) Find the friction force 

2. Draw 

Sketch: 
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3. Knowns and Unknowns 

• θA = 20° 

• θB = 60° 

• θC = 15° 

• m = 20 kg 

• FA = 200 N 

• FB = 150 N 

Unknowns: Ff 

4. Approach 

Draw the ball, then add forces. Use equilibrium 

equations ( [latex]\sum\underline{F}=0[/latex] , 

[latex]\sum\underline{M}=0[/latex] ) to find the 

friction force. 

5. Analysis 

Part a: 
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Part b: 

Step 1: find FG 

$$F_G=m g\\F_G=20kg\cdot 9.81m/

s^2\\F_G=196.2N$$ 

Step 2: Find the x-component of FG 
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$$F_{GX}=F_G\sin(15^{\circ})\\F_{GX}=196.2N\

cdot\sin(15^{\circ})\\F_{GX}=50.78N$$ 

Step 3: Find the x-component of FA 

$$\cos(20^{\circ})=\frac{F_A}{F_{AX}}\\F_{AX}=\fr

ac{F_A}{\cos(20^{\circ})}\\F_{AX}=\frac{200N}{\cos(

20^{\circ})}\\F_{AX}=212.8N$$ 

Step 4: Find the x-component of FB 

$$F_{BX}=F_B\cos(60^{\circ})\\F_{BX}=150N\

cos(60^{\circ})\\F_{BX}=75N$$ 

Step 5: Sum forces in the x-direction to find the 

frictional force 
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$$\sum F_x=0=-F_f+f_{BX}-F_{AX}+F_{GX}\\F_f=-

F_{AX}+F_{BX}+F_{GX}\\F_f=-212.8N+75N-50.78N$$ 

$$\underline{F_f=-87.02N}$$ 

Because the frictional force is negative, that means 

the frictional force actually acts in the opposite 

direction, so the friction is keeping the ball from going 

up the plane. 

6. Review 

The units of Ff are newtons, which makes sense 

because it is a force. It also makes sense that FAx is 

larger than FGx and FBx. 
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CHAPTER 5: TRUSSES 

This chapter will introduce you to a special type of structure called 

a ‘truss’. You’ll analyze these structures more in your Structures 

course, but for Statics you will need to know how to calculate the 

force in each member, using two methods: method of joints and 

method of sections. At first this might seem confusing, but there is 

something quite elegant and magical about the method once you 

understand it. Here are the sections in this Chapter: 

• 5.1 Trusses Introduction – what are trusses? 

• 5.2 Method of Joints – one method of finding the forces in the 

truss 

• 5.3 Method of Sections– another method to find the forces in 

the truss 

• 5.4 Zero-Force Members – how to identify members with no 

forces 

• 5.5 Examples  – Examples from your peers 

Here are the important equations for this chapter: 
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5.1 Trusses Introduction 

Trusses are rigid structures made up of two-force members, which 

are objects with exactly two forces/connections. Trusses are 

commonly found in the frame of a roof and the sides of a bridge: 

Source:Engineering Mechanics, Jacob Moore, et al. 
http://mechanicsmap.psu.edu/websites/5_structures/5-1_structures/
structures.html 
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Image Source: Billbeee at English Wikipedia. – Transferred from en.wikipedia 
to Commons., CC BY-SA 3.0, 

You’ll analyze these structures more in your Structures course, but 

for Statics you will need to know how to calculate the force in 

each member, using two methods: method of joints and method of 

sections. Method of joints is more like a particle analysis wherein 

you use only x and y equilibrium equations. Method of sections 

is more like a rigid body analysis where you can also include the 

moment equilibrium equation. Those are in the next sections. 

5.1.1 Two Force Members 

Before we discuss the structure of trusses, we must begin with 

defining two force members: 

A two force member is a body that has forces (and 
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only forces, no moments) acting on it in only two 

locations. In order to have a two force member in static 

equilibrium, the net force at each location must be 

equal, opposite, and collinear. This will result in all two 

force members being in either tension or compression 

as shown in the diagram below. 

Imagine a beam where forces are only exerted at each 

end of the beam (a two force member). The body has 

some non-zero force acting at one end of the beam, 

which we can draw as a force vector. If this body is in 

equilibrium, then we know two things: 1) the sum of the 

forces must be equal to zero, and 2) the sum of the 

moments must be equal to zero. 

In order to have the sum of the forces equal to zero, 

the force vector on the other side of the beam must be 

equal in magnitude and opposite in direction. This is the 

only way to ensure that the sum of the forces is equal to 

zero with only two forces. 

In order to have the sum of the moments equal to 

zero, the forces must be collinear. If the forces were not 
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collinear, then the two equal and opposite forces would 

form a couple. This couple would exert a moment on the 

beam when there are no other moments to counteract 

the couple. Because the moment exerted by the two 

forces must be equal to zero, the perpendicular distance 

between the forces (d) must be equal to zero. The only 

way to achieve this is to have the forces be collinear. 

Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/5_structures/

5-1_structures/structures.html 
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Adapted from image by 
ToddC4176 CC-BY-SA 3.0 

5.1.2 Trusses 

A truss is an 

engineering structure 

that is made entirely 

of two force members. In 

addition, statically 

determinate trusses 

(trusses that can be 

analyzed completely 

using the equilibrium 

equations), must 

be independently rigid. This means that if the truss was 

separated from its connection points, no one part would 

be able to move independently with respect to the rest 

of the truss. 

When we talk about analyzing a truss, we are usually 

looking to identify not only the external forces acting on 

the truss structure, but also the forces acting on each 

member internally in the truss. Because each member of 

the truss is a two force member, we simply need to 

identify the magnitude of the force on each member, 

and determine if each member is in tension or 

compression. 

To determine these unknowns, we have two methods 

available: the method of joints, and the method of 
sections. Both will give the same results, but each 

through a different process. 

The method of joints focuses on the joints, or the 
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connection points where the members come together. 

We assume we have a pin at each of these points that we 

model as a particle, we draw out the free body diagram 

for each pin, and then write out the equilibrium 

equations for each pin. This will result in a large number 

of equilibrium equations that we can use to solve for a 

large number of unknown forces. 

The method of sections involves pretending to split 

the truss into two or more different sections and then 

analyzing each section as a separate rigid body in 

equilibrium. In this method we determine the 

appropriate sections, draw free body diagrams for each 

section, and then write out the equilibrium equations 

for each section. 

The method of joints is usually the easiest and fastest 

method for solving for all the unknown forces in a truss. 

The method of sections on the other hand is better 

suited to targeting and solving for the forces in just a 

few members without having to solve for all the 

unknowns. In addition, these methods can be combined 

if needed to best suit the goals of the problem solver. 

Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/5_structures/

5-3_trusses/trusses.html 

 

Here are common types of bridge trusses: 

304  |  Statics

http://mechanicsmap.psu.edu/websites/5_structures/5-3_trusses/trusses.html
http://mechanicsmap.psu.edu/websites/5_structures/5-3_trusses/trusses.html


Source: https://eng.libretexts.org/Bookshelves/Civil_Engineering/
Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/
1.05%3A_Internal_Forces_in_Plane_Trusses 

 

Here are common types of roof trusses: 

Source: https://eng.libretexts.org/Bookshelves/Civil_Engineering/
Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/
1.05%3A_Internal_Forces_in_Plane_Trusses 
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5.1.3 Parts of a Truss 

A truss is composed of: 

• joints 

• members, and 

• external forces (reaction forces and applied forces). 

 

The joints are often labelled with a letter and are where the 

external forces and members connect. 

Here is an example of just the joints without the members: 
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Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/5_structures/

5-4_method_of_joints/methodofjoints.html 

 

The members are the metal or wooden beams that are labelled 

with the connection between joints. For example member AB 

connects joints A and B. 
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The external forces are the reaction forces and the applied forces. 

The applied forces come from the load distributed across the bridge 

or from the roof. 

 

The applied force / load from trucks and cars goes from the deck, 

to the stringers, across the beams, to the joints of the truss where it 

is carried as applied (external) forces on the edges of the bridge. 
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Image annotated from original source: https://upload.wikimedia.org/
wikipedia/en/2/25/Nine_stringers%2C_2_floorbeams.jpg 

 

Here is a second type of structure. Which are the stringers and 

which are the beams? 
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Annotations added from original image source: https://www.maxpixel.net/
static/photo/1x/
Buildings-Leaves-Park-Autumn-Road-Fall-Structure-5623840.jpg 

. 

. 

. 

. 

. 

. 

Any ideas? 

. 

. 

. 

. 

. 

Here’s the answer! 
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Annotations added from original source: https://www.maxpixel.net/static/
photo/1x/Buildings-Leaves-Park-Autumn-Road-Fall-Structure-5623840.jpg 

 

Here are some examples on how to convert the reaction forces / 

moments for a truss. Note: these are the same as in section 3.4. 
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Source: Internal Forces in Beams and Frames, 

Libretexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/1.05%3A_Internal_Forces_in_Plane_Trusses 

5.1.4 Tension & Compression 

The two-force members carry internal forces in either tension or 

compression between the joints. One standard sign convention is to 

assume all members are in tension, labelled as positive (+), then any 

negative number (-) means the member is in compression. 
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Source: https://www.flickr.com/photos/121935927@N06/13580545445 

Following Newton’s 3rd law regarding equal and opposite reactions, 

when there is tension in a member, there is also tension in a joint. 

Pulling on the member (tension) in turn pulls on the joint. Similarly, 

pushing on a member (compression) pushes on the joint as well. 

Similarly, the force from member AB (Fab) is distributed from joint 

a through member ab to joint b. Shown here in compression, Fab

is negative. The magnitude of Fab on joint a is the same as the 

magnitude on joint b, even though they are pointing two different 

directions (hence equal and opposite). Member bc will have a 

different magnitude. 
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When you look at each joint, compression (-) appears to be 

pushing on the joint while tension (+) is pulling on it with the force 

named for the member ( Fab ).

 

In the next section, we will discuss each of these methods in 

greater detail and how to solve problems using them. 

 

Key Takeaways 
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Basically: A truss is a rigid structure composed of two 

force members (where forces are applied at only two 

locations) that connect at joints and have external forces 

applied. The internal forces of the truss put members in 

compression (-) or tension (+). 

Application: The frame of a roof is often composed of a 

wooden truss, and trusses are commonly found in wooden 

and metal bridges. 

Looking Ahead: The next two sections discuss the method 

for calculating the force in the members & you’ll talk about 

trusses more in your Structures course. 

 

5.1 Trusses Introduction  |  315



5.2 Method of Joints 

The method of joints is a form of particle analysis. After solving for 

the reaction forces, you solve for the unknown forces at each joint 

until you have found the value of each member. You start with your 

model: 

Convert the constraints into reaction forces with the appropriate 

labels: 

 

Now solve for the reaction forces (Rax  Ray  Re) looking only at the 

external forces using the equilibrium equations for a rigid body: 

$$\sum F_x=0\\\sum F_y=0\\\sum M=0$$ 

Assuming the length of each member is L: 

$$\sum F_x=R_{ax} = 0, \\\underline{R_{ax} = 0}$$ 
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$$\sum F_y=R_{ay}+R_e – F_g – F_f= 0, \\R_{ay} +R_e = 150 

lb$$ 

 

$$\sum M_a= -L*F_g – 2L * F_f+3L*R_e = 0\\R_e = \frac{100L 

+ 100L}{3L}\\\underline{R_e =66.7 lb} $$ 

 

$$ R_{ay} = 150 lb – 66.7 lb\\ \underline{ R_{ay}= 83.3 lb }$$ 

 

Next, pick a joint where there are 2 or fewer unknown values such 

as a or e. This is because you only have 2 equations available to find 

the unknowns: [latex]\sum F_x=0  \text{,   } \sum F_y=0[/latex]. 

The following table shows the number of known and unknown 

forces at each joint. 

Joint: a b c d e f g 

Known 
forces: 2 0 0 0 1 1 1 

Unknown 
forces: 2 3 4 3 2 4 4 

Choosing joint a (or e), do a particle analysis, assuming all of the 

members are in tension. That way, if the force is negative, that 

means it is in compression. Notice Rax has been excluded because it 

is equal to zero. 

 

$$\sum F_y=0\\R_{ay}+F_{ab}sin(60^\circ) = 0\\F_{ab}=-
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\frac{R_{ay}}{sin(60^\circ}=-\frac{83.7 \text{ lb}}{ 0.866} 

\\\underline{F_{ab} = – 96.2 \text{ lb}} \text{(compression)}$$ 

 

$$\sum F_x=0\\F_{ag} + F_{ab}cos(60^\circ) = 0 \\F_{ag} =- 

F_{ab}cos(60^\circ) = – (-96.2 \text{ lb}) * (0.5) \\ 

\underline{F_{ag} = + 48.1 \text{ lb}} \text{(tension)}$$ 

Next move to joint b because you now only have 2 unknowns now 

at joint b (Fbc and Fbg). 

Keep analyzing joints until you’ve calculated the load in all 

members: 

 

Member ab bc cd de ef fg ag bg cg cf df 

Force (lb) 96.2 96.2 77.0 77.0 38.5 86.6 48.1 96.2 19.3 19.3 77.0 

Tension or
Compression C C C C T T T T T C T 

And that’s it! If you don’t specify compression or tension, you should 

use positive and negative to denote tension and compression, 

respectively. 

 

Here is a second explanation on how to solve using method of 

joints: 
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The method of joints is a process used to solve for the 

unknown forces acting on members of a truss. The 

method centers on the joints or connection points 

between the members, and it is usually the fastest and 

easiest way to solve for all the unknown forces in a truss 

structure. 

Using This Method: 

The process used in the method of joints is outlined 

below: 

1. In the beginning it is usually useful to label the 

members and the joints in your truss. This will 

help you keep everything organized and 

consistent in later analysis. In this book, the 

members will be labeled with letters and the joints 

will be labeled with numbers.

2. Treating the entire truss structure as a rigid 
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body, draw a free body diagram, write out the 

equilibrium equations, and solve for the external 

reacting forces acting on the truss structure. This 

analysis should not differ from the analysis of a 

single rigid body.

3. Assume there is a pin or some other small 

amount of material at each of the connection 

points between the members. Next you will draw a 

free body diagram for each connection point. 

Remember to include: 

◦ Any external reaction or load forces that 

may be acting at that joint. 

◦ A normal force for each two force 

member connected to that joint. Remember 

that for a two force member, the force will 

be acting along the line between the two 

connection points on the member. We will 

also need to guess if it will be a tensile or a 

compressive force. An incorrect guess now 

though will simply lead to a negative 

solution later on. A common strategy then is 
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to assume all forces are tensile, then later in 

the solution any positive forces will be 

tensile forces and any negative forces will be 

compressive forces. 

◦ Label each force in the diagram. Include 

any known magnitudes and directions and 

provide variable names for each unknown.

4. Write out the equilibrium equations for each of 
the joints. You should treat the joints as particles, 

so there will be force equations but no moment 

equations. This should give you a large number of 

equations. 

◦ The sum of the forces in the x direction 

will be zero and the sum of the forces in the 

y direction will be zero for each of the 

joints.$$\sum\vec F=0\\\sum 

F_x=0\:\sum F_y=0$$ 

5. Finally, solve the equilibrium equations for the 

unknowns. You can do this algebraically, solving 

for one variable at a time, or you can use matrix 
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equations to solve for everything at once. If you 

assumed that all forces were tensile earlier, 

remember that negative answers indicate 

compressive forces in the members. 

Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/5_structures/

5-4_method_of_joints/methodofjoints.html 

 

Additional examples from the Engineering Mechanics webpage: 

Example 1: 

Find the force acting in each of the members in the 

truss bridge shown below. Remember to specify if each 

member is in tension or compression. 
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Solution: 
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324  |  Statics

http://mechanicsmap.psu.edu/websites/5_structures/5-4_method_of_joints/methodofjoints.html
http://mechanicsmap.psu.edu/websites/5_structures/5-4_method_of_joints/methodofjoints.html


Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/5_structures/

5-4_method_of_joints/pdf/

MethodOfJoints_WorkedExample1.pdf 
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Example 2: 

Find the force acting in each of the members of the truss shown 

below. Remember to specify if each member is in tension or 

compression. 

 

Solution here. 

 

In summary: 
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Key Takeaways 

Basically: Method of joints is an analysis technique to find 

the forces in the members of a truss. It looks at each joint 

individually using the particle equilibrium equations. 

Application: To calculate the loads on bridges and roofs, 

especially if you need to know all of the values of the 

members. 

Looking Ahead: The next section explores a method to 
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solve one or two members of a truss (instead of finding all 

of them). 
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5.3 Method of Sections 

The method of sections uses rigid body analysis to solve for a specific 

member or two. Instead of looking at each joint, you make a cut 

through the truss, turning the members along that line into internal 

forces (assume in tension). Then you solve the rigid body using the 

equilibrium equations for a rigid body: [latex]\sum F_x=0\;\sum 

F_y=0\;\sum M_z=0[/latex] 

The truss: 

 

Source: Engineering Mechanics, Jacob Moore, et al. 
http://mechanicsmap.psu.edu/websites/5_structures/
5-5_method_of_sections/methodofsections.html 

is split into two to solve for FE. 
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Source: Engineering Mechanics, Jacob Moore, et al. 
http://mechanicsmap.psu.edu/websites/5_structures/
5-5_method_of_sections/methodofsections.html 

For this example, you could choose the right half or left half. For 

some problems, being strategic is necessary otherwise you need to 

make multiple cuts. In this problem you had to solve for the reaction 

forces first, but that isn’t always the case as you can sometimes just 

make the cut (see example 2 below). 

 

Here are more examples of how to make a cut and showing the 

naming convention: 
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Source: Internal Forces in Beams and Frames, 

Libretexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/1.05%3A_Internal_Forces_in_Plane_Trusses 
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Here is a detailed explanation: 

The method of sections is a process used to solve for 

the unknown forces acting on members of a truss. The 

method involves breaking the truss down into individual 

sections and analyzing each section as a separate rigid 

body. The method of sections is usually the fastest and 

easiest way to determine the unknown forces acting in a 

specific member of the truss. 

Using This Method: 

The process used in the method of sections is 

outlined below: 

1. In the beginning it is usually useful to label the 

members in your truss. This will help you keep 

everything organized and consistent in later 

analysis. In this book, the members will be labeled 

with letters.
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2. Treating the entire truss structure as a rigid 

body, draw a free body diagram, write out the 

equilibrium equations, and solve for the external 

reacting forces acting on the truss structure. This 

analysis should not differ from the analysis of a 

single rigid body.

3. Next you will imagine cutting your truss into 

two separate sections. The cut should travel 

through the member that you are trying to solve 

for the forces in, and should cut through as few 

members as possible (The cut does not need to be 

a straight line).
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4. Next you will draw a free body diagram for 

either one, or both sections that you created. Be 

sure to include all the forces acting on each 

section. 

◦ Any external reaction or load forces that 

may be acting at the section. 

◦ An internal force in each member that was 

cut when splitting the truss into sections. 

Remember that for a two force member, the 

force will be acting along the line between 

the two connection points on the member. 

We will also need to guess if it will be a 

tensile or a compressive force. An incorrect 

guess now though will simply lead to a 

negative solution later on. A common 

strategy then is to assume all forces are 

tensile, then later in the solution any 

positive forces will be tensile forces and any 

negative forces will be compressive forces. 

◦ Label each force in the diagram. Include 
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any known magnitudes and directions and 

provide variable names for each unknown.

5. Write out the equilibrium equations for each 

section you drew a free body diagram of. These 

will be extended bodies, so you will need to write 

out the force and the moment equations. 

◦ You will have three possible equations for 

each section, two force equations and one 

moment equation.$$\sum\vec F=0\; \; 

\sum\vec M=0\\\sum F_x=0\; \; \sum 

F_y=0\; \; \sum M_z=0$$ 

6. Finally, solve the equilibrium equations for the 

unknowns. You can do this algebraically, solving 

for one variable at a time, or you can use matrix 

equations to solve for everything at once. If you 

assumed that all forces were tensile earlier, 

remember that negative answers indicate 

compressive forces in the members. 
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Source:Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/5_structures/

5-5_method_of_sections/methodofsections.html 

 

Additional examples from the Engineering Mechanics webpage: 

Example 1: 

Find the forces acting on members BD and CE. Be 

sure to indicate if the forces are tensile or compressive. 
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Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/5_structures/

5-5_method_of_sections/pdf/

MethodOfSections_WorkedExample1.pdf 

 

Example 2: 

Find the forces acting on members AC, BC, and BD of 

the truss. Be sure to indicate if the forces are tensile or 

compressive. 
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If we make a cut in the top section, we don’t need to 

solve for the reaction forces. 
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Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/5_structures/

5-5_method_of_sections/pdf/

MethodOfSections_WorkedExample2.pdf 

 

Even more examples are available at: https://eng.libretexts.org/

Bookshelves/Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/

1.05%3A_Internal_Forces_in_Plane_Trusses 

 

In summary: 
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Key Takeaways 

Basically: Method of sections is an analysis 

technique to find the forces in some members of a 

truss. It separates the truss into two sections then 

uses the rigid body equilibrium equations. 

Application: To calculate the loads on bridges and 
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roofs, especially if you need to know only one or 

two of the members. 

Looking Ahead: The next section explores a trick 

that makes solving faster, especially for method of 

joints. 
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5.4 Zero-Force Members 

This is a special case that is specially useful for method of joints and 

method of sections. These special types of members called zero-
force members ensure the truss stays in a particular shape as a rigid 

body, but carries no load. 

Zero-force members are members that you can tell just by 

inspection that they carry no load. They are important to the 

structure to ensure it stays in a rigid shape. 

Zero-force members can be found considering the equilibrium 

equations. Look at joint e below. In the y direction, there is only 

1 force: Feh. So if the sum of the forces in the y direction $latex 

\sum F_{eh} = Feh = 0, then Feh = 0. Similarly, Fmk and Fcp are zero-

force members (if you look at joint m and c). Note that if you looked 

at joint k or p, you couldn’t tell that Fmk and Fcp are zero-force 

members. 
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Adapted from original source: https://demo.webwork.rochester.edu/
webwork2_files/tmp/daemon_course/images/
4cbba3a2-d72c-3d22-bba6-f6856747dafd___50b8ddcf-dab2-3209-b817-0ab27
426a1d4.png 

There isn’t a huge problem if you can’t find zero-force members just 

from inspection, but you might find that certain joints are not able 

to be solved as easily. (Zero-force members let you have one less 

unknown). 

346  |  Statics



Also see that L and G have no zero-force members because the 

externally applied loads balance the members. 

Here are some examples to practice on: 

Example 1 

 

Source: https://commons.wikimedia.org/wiki/File:Camelback-truss.svg 

 

(I count 3 zero-force members, assuming there are no loads on 

the bridge at the joints). 

 

Example 2 

Source: https://commons.wikimedia.org/wiki/File:Bowstring-truss.svg 
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(I count 1 zero-force member, assuming there are no loads on the 

bridge at the joints). 

 

Example 3 

Source: https://pxhere.com/en/photo/995729 

 

(Looking at only 1 side of the bridge, in theory there are 7 zero-

force members, but because there is a load on the deck it is more 

likely that all of them would be carrying a load). 

 

Admittedly, zero-force members are more theoretical than actual. 
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Key Takeaways 

Basically: Zero-force members are two-force members 

that do not carry any load but help keep the structure into 

a certain shape. 

Application: In trusses. 

Looking ahead: We will talk about this again in sections 1.3 

on vectors and in section 1.4 and 1.5 on dot products and 

cross products. 

5.4 Zero-Force Members  |  349



5.5 Examples 

Here are examples from Chapter 5 to help you understand these 

concepts better. These were taken from the real world and supplied 

by FSDE students in Summer 2021. If you’d like to submit your own 

examples, please send them to the author eosgood@upei.ca. 

 

Example 5.5.1: Method of Sections – 
Submitted by Riley Fitzpatrick 

1. Problem 

A flower cart at a local garden center is 

being pushed with a force of 500 n at joint G. 

It’s back wheels (A) are locked so it is not 

moving. There is 1 meter of space between 

each of the four shelves in height and each 

shelf is four meters long. 

a) Calculate the reaction forces of the 

locked wheels and the unlocked wheels. 

350  |  5.5 Examples

mailto:eosgood@upei.ca


b) Calculate the load carried by FCG, and 

whether it is in tension or compression 

Which method did you use, joints or 

sections? Which is faster for the style of 

questions? How would your strategy change 

if your were calculating the load in each 

member? 

Source: https://flic.kr/p/txjSpP 
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2. Draw 

Sketch: 
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Free-body Diagram: 

3. Knowns and Unknowns 

Known: 

• P = 500 N 
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• Width = 4 m 

• Total height = 3 m 

Unknowns: RAx, RAy, RBy, FCG 

4. Approach 

Part a: determine reaction forces using equilibrium 

equations 

Part b: calculate FCG using method of sections. Make a 

cut, then solve internal forces using equilibrium 

equations 

5. Analysis 

Part a: 

Solving for RAx: 

$$\sum F_x=0=P-

R_{Ax}\\R_{Ax}=P\\R_{Ax}=500N$$ 

Solving for RBy: 

$$\sum M_A=0=(r_{BA}\cdot R_{By})-(r_{GA}\cdot 

P)\\r_{BA}\cdot R_{By}=r_{GA}\cdot 

P\\R_{By}=\frac{r_{GA}\cdot 

P}{r_{BA}}\\R_{By}=\frac{2m\cdot 

500N}{4m}\\R_{By}=250N$$ 

Solving for RAy: 

$$\sum F_y=0=R_{By}+R_{Ay}\\R_{Ay}=-

R_{By}\\R_{Ay}=-250N$$ 

The answer we got is a negative number. All this 

means is that the direction of this vector is drawn wrong 

on our original diagram (in reference to our coordinate 
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frame). This makes sense as RAy and RBy are the only 

external forces in the y direction, so they have to cancel 

each other for the equilibrium equations to be true. 

Therefore, one of them should have a negative direction. 

We will leave this answer as is for now, but the next time 

we draw the system, we will change the direction of the 

arrow. 

$$ \underline{R_{Ax}=500N,\; R_{Ay}=-250N, \; 

R_{By}=250N}$$ 

Part b: 

Firstly, we re-draw the diagram, changing the 

direction of RAy. Then, since we are using method of 

sections, we make a cut so that the member FCG (the 

one we want to find) is cut. 

Now we re-draw, choosing one of the pieces from the 

cut. Here the top half is chosen, but you could also 

chose the bottom half and get the right answer. The 
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only reason the top half was chosen here is because 

there are less external forces to consider for the top. 

Solve for the member we are looking for: 

 $$\sum 

F_x=0=P+\frac{4}{\sqrt{17}}F_{CG}\\\frac{4}{\sqrt{17}}

F_{CG}=-P\\F_{CG}=-

P(\frac{\sqrt{17}}{4})\\F_{CG}=-500N(\frac{\sqrt{17}}{4

})\\F_{CG}=-515.388N$$ 

Again, the number we get is negative. The way we 

drew FCG originally was as if the member was in tension. 

The negative number just means that it is actually 

compression, not tension. 

$$ \underline{F_{CG}=515 \text{N (Compression)}}$$ 

Part c: 

For part b I used the method of sections, as it would 

be the fastest method. The method of joints would 

require the lower joints to be solved first which would 

be a much slower process, whereas with this method a 

simple cut can be made and the member;s load can be 
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quickly solved using equilibrium equations. Had the 

question asked for all member loads to be solved 

however, the method of joints would have been the 

faster approach. 

6. Review 

Part a: 

RAx is equal and opposite to P so we know it is correct, 

and the value of RBy should also be correct as its 

moment about A (250 * 4m = 1000 Nm), is equal and 

opposite to the moment of P about A, (500 N * 2 m = 

1000 Nm). as RAy is equal and opposite to RBy it is also 

correct. 

Part b: 

The x component of the calculated value of FCG is 

equal in magnitude to P (see equation below), and it is 

the only cut member acting in the x direction. 

Therefore, it must be correct. 

$$\frac{4}{\sqrt{17}}(515 N)=500 N$$ 

Part c: 

The method of sections allows you to solve a very 

specific area of the systems internal forces (the 

members that are cut), whereas the method of joints 

usually requires you to solve most if not all of the 

internal forces of the system. Therefore, the method of 

sections is the most efficient for finding the internal 

forces of specific parts of the system, whereas the 

method of joints is more efficient for solving the whole 

system. 

5.5 Examples  |  357



 

Example 5.5.2: Zero-Force Members, 
submitted by Michael Oppong-Ampomah 

1. Problem 

A bridge with uneven ground has been 

built as shown below. Force is applied at 

three points on the top of the bridge. 

a). Find any zero-force members 

b). What purpose do these members serve? 
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2. Draw 

Free-body diagram: 
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3. Knowns and Unknowns 

Unknown: which members are zero-force 

4. Approach 

Look at each joint and determine how many forces are 

in each direction. If there is only one force in a 

direction, that member is zero-force. 

5. Analysis 

Part a: 

Let’s start with joint C. If we think of the forces acting 

in the x and y directions as shown below by the 

coordinate frame, we see that there are two forces 

acting in the y direction, and only one in the x direction. 

Therefore, assuming the joint is in static equilibrium, 

member CE is zero-force. 
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If we do the same type of analysis for the other joints 

and remove the zero-force members, the structure now 

looks like this: 

After one more analysis of the joints, we find one 

more zero-force member, as shown below. 
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Answer: CE, DG, and FG are zero-force members. 

Part b: 

Zero-force members exist to provide stability to the 

truss, to keep the shape rigid. 

6. Review 

Although the new truss (without zero-force members) 

looks strange, there are no joints where there’s only one 

force in one direction, therefore there are no more 

zero-force members. 
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CHAPTER 6: INTERNAL 
FORCES 

In the last chapter we looked at the normal (axial) force running 

through beams joined into trusses by analyzing either the joints or 

a whole section of the truss. 

In this chapter, we look at what happens along a single beam. We 

will look at three types of internal forces and moments. Note that 

when we say ‘internal forces’, we really mean ‘internal forces and 

moments’. Inside a beam, we will calculate the normal and shear 

forces as well as the bending moment at any point in the beam. 

For this chapter: the shear force and bending moment change 

throughout the beam because additional transverse forces are 

applied. However, the normal force usually stays the same, because 

it’s uncommon to have applied axial forces along the beam. 

Here are the sections in this Chapter: 

• 6.1 Types of Internal Forces – shear force, normal force and 

bending moment 

• 6.2 Shear/Moment Diagrams – graphing the shear force and 

bending moment 

• 6.3 Examples – Examples from your peers 

Here are the important equations for this chapter: 
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6.1 Types of Internal Forces 

When you make a cut in an object, similar to a fixed reaction, we 

describe what is happening at that point using one horizontal force 

(called normal force), one vertical force (called shear force), and a 

bending moment. 

Adapted from source: Engineering Mechanics, Jacob Moore, et al. 
http://mechanicsmap.psu.edu/websites/6_internal_forces/
6-2_internal_forces_equilibrium/internal_forces_equilibrium.html 

6.1.1 Types of Internal Forces 

There are 3 types of internal forces (& moments): 

• normal force (N) – the horizontal force we calculated in trusses 

in the last chapter 
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• shear force (V) – the vertical force that changes based on the 

applied loads 

• bending moment (M) – changes based on the applied loads and 

applied moments 

Normal force is represented by ‘N’. Shear force, the vertical force 

is represented with ‘V’. Bending moment is ‘M’.  Normal and shear 

have units of N or lb and bending moment has units of Nm or ft-lb. 

The following table summarizes information on internal forces (and 

moments). 

Force/
Moment Abbreviation Unit 

Direction 
for a 
horizontal 
beam 

Normal 
Force N N  or lb horizontal 

Shear Force V N  or lb vertical 

Moment M Nm or 
ft-lb rotation 

Note that for a vertical column, the normal force would be vertical. 

For this reason, the normal force is often called ‘axial’ as in: along 

the axis. The shear force for a column would be horizontal and is 

sometimes called ‘transverse’. 

This is for a 2d analysis of the beam assuming there is negligible 

loading in the third dimension. 

 

When a beam or frame is subjected to transverse 

loadings, the three possible internal forces that are 

developed are the normal or axial force, the shearing 
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force, and the bending moment, as shown in section k of 

the cantilever of the figure below. To predict the 

behavior of structures, the magnitudes of these forces 

must be known. In this chapter, the student will learn 

how to determine the magnitude of the shearing force 

and bending moment at any section of a beam or frame 

and how to present the computed values in a graphical 

form, which is referred to as the “shearing force” and 

the “bending moment diagrams.” Bending moment and 

shearing force diagrams aid immeasurably during 

design, as they show the maximum bending moments 

and shearing forces needed for sizing structural 

members. 

Normal Force 

The normal force at any section of a structure is 
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defined as the algebraic sum of the axial forces acting 

on either side of the section. 

Shearing Force 

The shearing force (SF) is defined as the algebraic sum 

of all the transverse forces acting on either side of the 

section of a beam or a frame. The phrase “on either side” 

is important, as it implies that at any particular instance 

the shearing force can be obtained by summing up the 

transverse forces on the left side of the section or on 

the right side of the section. 

Bending Moment 

The bending moment (BM) is defined as the algebraic 

sum of all the forces’ moments acting on either side of 

the section of a beam or a frame. 

Source: Internal Forces in Beams and Frames, 

Libretexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.04%3A_Internal_Forces_in_Beams_and_Frames 

 

In 3 dimensions, there are: 
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• 1 normal force (N) 

• 2 shear forces (V1 & V2), and 

• 3 bending moments (M1, M2, & T – torsion). 

Source: Engineering Mechanics, Jacob Moore, et al. 
http://mechanicsmap.psu.edu/websites/6_internal_forces/
6-2_internal_forces_equilibrium/
internal_forces_equilibrium.html 

6.1.2 Sign Convention 

So that there is a standard within the industry, a sign convention is 

necessary so we agree on what is positive and what is negative. On 
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the right for shear – up is positive. Notice that both of the following 

figures show the identical sign convention. 

Positive sign convention adapted from source: https://eng.libretexts.org/
Bookshelves/Civil_Engineering/
Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/
1.04%3A_Internal_Forces_in_Beams_and_Frames 

When you look at the beam as a whole (in the figure below), positive 

shear is right side down. When you cut into beam, for it to be in 

static equilibrium, the positive shear must then be up on the right 

to be equal and opposite of the overall motion. 
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Axial (Normal) Force 

An axial force is regarded as positive if it tends to tier 

the member at the section under consideration. Such a 

force is regarded as tensile, while the member is said to 

be subjected to axial tension. On the other hand, an 

axial force is considered negative if it tends to crush the 

member at the section being considered. Such force is 

regarded as compressive, while the member is said to be 

in axial compression. 

Shear Force 

A shear force that tends to move the left of the 

section upward or the right side of the section 

downward will be regarded as positive. Similarly, a shear 

force that has the tendency to move the left side of the 

section downward or the right side upward will be 

considered a negative shear force. 

Bending Moment 

A bending moment is considered positive if it tends to 

cause concavity upward (sagging). If the bending 
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Positive sign convention adapted from 
https://eng.libretexts.org/
Bookshelves/Civil_Engineering/
Book%3A_Structural_Analysis_(Udoe
yo)/01%3A_Chapters/
1.04%3A_Internal_Forces_in_Beams
_and_Frames 

moment tends to cause concavity downward (hogging), 

it will be considered a negative bending moment. 

Source: Internal Forces in Beams and Frames, 

Libretexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.04%3A_Internal_Forces_in_Beams_and_Frames 

6.1.3 Calculating the Internal Forces 

To solve the internal forces at a certain point along the beam, 

 

1. Find the external & 

reaction forces 

2. Make a cut. 

3. In a FBD of one side of the 

cut, add the internal forces 

(and moments) using the 

positive sign convention. 

4. Use the equilibrium 

equations to solve for the 

unknown internal forces and moments. 

 

 

Example: For the following distributed load, a) what are reaction 

372  |  Statics

https://eng.libretexts.org/Bookshelves/Civil_Engineering/Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.04%3A_Internal_Forces_in_Beams_and_Frames
https://eng.libretexts.org/Bookshelves/Civil_Engineering/Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.04%3A_Internal_Forces_in_Beams_and_Frames
https://eng.libretexts.org/Bookshelves/Civil_Engineering/Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.04%3A_Internal_Forces_in_Beams_and_Frames
https://eng.libretexts.org/Bookshelves/Civil_Engineering/Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.04%3A_Internal_Forces_in_Beams_and_Frames
https://eng.libretexts.org/Bookshelves/Civil_Engineering/Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.04%3A_Internal_Forces_in_Beams_and_Frames


forces? b) what are the internal forces at the midpoint b) between 

reaction forces? 

Adapted from: Source: Engineering Mechanics, Jacob Moore, et al. 
http://mechanicsmap.psu.edu/websites/6_internal_forces/
6-3_axial_torque_diagrams/axial_torque_diagrams.html 

1. Solve external forces: 

Adapted from: Source: Engineering Mechanics, Jacob Moore, et al. 
http://mechanicsmap.psu.edu/websites/6_internal_forces/
6-3_axial_torque_diagrams/axial_torque_diagrams.html 

[latex]\sum F_{X}=A_{x}=0[/latex] 

[latex]\sum F_{y}=A_{y}+C-\omega L=0[/latex] 

[latex]\sum M_{A}=-(\omega L)\left(\frac{L}{2}\right)+d_{A B} 

C=0[/latex] 
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$$C = \left(\frac{\omega L^2}{2d_{A B}}\right) = \frac{(100 

\frac{lb}{ft} )*(7ft)^2}{2 * (4ft)} = 612.5 lb \text{ (+j direction)} $$ 

$$A_y = \omega*L- C = (100 \frac{lb}{ft})*(7 ft) – 612.5 lb = 87.5 lb 

\text{ (+j direction) }$$ 

$$\underline{A_x = 0 \qquad A_y = 87.5 \text{ (+j )} \qquad C = 

612.5 lb \text{ (+j )} }$$ 

2. Make a cut at B. 

3. In a FBD of one side of the cut, add the internal forces (and 

moments) using the positive sign convention. 

4. Use the equilibrium equations to solve for the unknown internal 

forces and moments. 

For just this portion, the force from intensity is: Fw = ( 100 lb/ft 

) * ( 2 ft) = 200 lb and acts 1 ft from the left, so the moment due to 

intensity is: Mw = w * 2 ft * 1 ft = Fw * 1 ft = ( 100 lb/ft ) * ( 2 ft) * (1 

ft)  =  200 ft-lb 

$$\sum F_y = 87.5 lb – 200 lb – V = 0 \\ V = -112.5 lb \text{ (- 

indicates going up not down)} $$ 
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$$ \sum M_A = – (w * 2 ft) * (1 ft) – V * (2 ft)  + M = 0 \\ M = (100 

\frac{lb}{ft}) * 2 ft^2 + (-112.5 lb) * (2 ft) \\ M = 200 ft \cdot lb – 

225 ft \cdot lb \\ M = -25 ft \cdot lb \text{ (- indicates going 

reverse direction)} $$ 

 

$$\underline{N = 0 \qquad V = -112.5 lb \text{ (+j )} \qquad M = 

-25 ft \cdot lb \text{ (clockwise)} }$$ 

 

Key Takeaways 

Basically: The internal forces (and moments) for a 2d 

beam are: shear, normal, and bending moment. There is a 

positive sign convention to use when making a cut along a 

beam to determine the forces inside: on the left: shear 

down, normal out, moment up. 

Application: A bridge that has different loads applied 

(from cars, trucks, lampposts, etc). Use this method to 

calculate the internal loads at a particular point of interest. 

Looking Ahead: In the next section, we’ll look at how to 

calculate the internal force across the whole beam, and 

display the results graphically. 
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6.2 Shear/Moment Diagrams 

6.2.1 What are Shear/Moment Diagrams? 

Shear/Moment diagrams are graphical representations of the 

internal shear force and bending moment along the whole beam. 

 

Source (image): By XFEM Skier – Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=29178249 
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Shearing Force Diagram 

This is a graphical representation of the variation of 

the shearing force on a portion or the entire length of a 

beam or frame. As a convention, the shearing force 

diagram can be drawn above or below the x-centroidal 

axis of the structure, but it must be indicated if it is a 

positive or negative shear force. 

Bending Moment Diagram 

This is a graphical representation of the variation of 

the bending moment on a segment or the entire length 

of a beam or frame. As a convention, the positive 

bending moments are drawn above the x-centroidal axis 

of the structure, while the negative bending moments 

are drawn below the axis. 

Below is a simple example of what shear and moment 

diagrams look like, afterwards, the relation between the 

load on the beam and the diagrams will be discussed. 

Source: Internal Forces in Beams and Frames, 

LibreTexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.04%3A_Internal_Forces_in_Beams_and_Frames 
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6.2.2 Distributed Loads & Shear/Moment 
Diagrams 

There is a relationship between distributed loads and shear/

moment diagrams. Simply put: 

[latex]\frac{dM}{dx}=V(x)[/latex] 

[latex]\frac{dV}{dx}=-w(x)[/latex] 

[latex]\frac{d^2M}{dx^2}=-w(x)[/latex] 

Or: 

[latex]\Delta M=\int V(x)dx[/latex] 

[latex]\Delta V=\int w(x)dx[/latex] 

So, if there is a constant distributed load, then the slope of shear 

will be linear and the slope of the moment will be parabolic. If 

distributed load is 0, then the shear will be constant and the slope 

of the moment will be linear (as shown in example 1 in the next 

section). 

 

 

For the derivation of the relations among w, V, and M, 

consider a simply supported beam subjected to a 

uniformly distributed load throughout its length, as 

shown in the figure below. Let the shear force and 

bending moment at a section located at a distance 

of x from the left support be V and M, respectively, and 
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at a section x + dx be V + dV and M + dM, respectively. 

The total load acting through the center of the 

infinitesimal length is wdx. 

To compute the bending moment at section x + dx, 

use the following: 

[latex]M_{x+dx}=M+Vdx-wdx \cdot dx/2\\ \qquad 

\quad=M+Vdx \text{ (neglecting the small second order 

term wdx^2/2)}[/latex] 

[latex]M+dM=M+Vdx[/latex] 

or 

[latex]\frac{dM}{dx}=V(x)[/latex]  (Equation 6.1) 

Equation 6.1 implies that the first derivative of the 

bending moment with respect to the distance is equal to 

the shearing force. The equation also suggests that the 

slope of the moment diagram at a particular point is 

equal to the shear force at that same point. Equation 

6.1 suggests the following expression: 

[latex]\Delta M=\int V(x)dx[/latex] (Equation 6.2) 

Equation 6.2 states that the change in moment equals 

the area under the shear diagram. Similarly, the shearing 

force at section x + dx is as follows: 
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[latex]V_{x+dx}=V-wdx\\V+dV=V-wdx[/latex] 

or 

[latex]\frac{dV}{dx}=-w(x)[/latex]  (Equation 6.3) 

Equation 6.3 implies that the first derivative of the 

shearing force with respect to the distance is equal to 

the intensity of the distributed load. Equation 

6.3 suggests the following expression: 

[latex]\Delta V=\int w(x)dx[/latex] (Equation 6.4) 

Equation 6.4 states that the change in the shear force 

is equal to the area under the load diagram. Equation 

6.1 and 6.3 suggest the following: 

[latex]\frac{d^2M}{dx^2}=-w(x)[/latex] (Equation 

6.5) 

Equation 6.5 implies that the second derivative of the 

bending moment with respect to the distance is equal to 

the intensity of the distributed load. 

Source: Internal Forces in Beams and Frames, 

LibreTexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.04%3A_Internal_Forces_in_Beams_and_Frames 
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Adapted from original source 
https://eng.libretexts.org/
Bookshelves/Civil_Engineering/
Book%3A_Structural_Analysis_(Ud
oeyo)/01%3A_Chapters/
1.04%3A_Internal_Forces_in_Bea
ms_and_Frames 

6.2.3 Producing a Shear/Moment Diagram 

There are many methods you can use to solve a shear/moment 

diagram. First, you can find the equation for each portion and 

integrate using the above equations. 

Second, you could use the method shown in the previous section 

to calculate the internal forces at important points (where loads are 

applied, the start and end of distributed loads, at reaction points). 

Plot these points on the V and M plots at the x locations, then 

connect the dots using the appropriate shape slope (more on this at 

the bottom of this page). 

Third, you can find the equations by using the equilibrium 

equations (so there’s no integration/differentiation). 

1. Draw a FBD of the 

structure 

2. Calculate the reactions using 

the equilibrium equations 

(may not need to do this if 

choosing a cantilever beam 

and using the free side for 

the FBD). 

3. Make a cut and add internal 

forces N V and M using the 

positive sign convention. 

Depending on the number of loads, you may need multiple 

cuts. Recall the positive convention: 

4. For shear, find an equation (expression) of the shear that is x 

distance from the origin (often the reaction) for each cut. 

5. For moment, find an equation (expression) of the shear that is x 

distance from the origin (often the reaction) for each cut. 

6. Plot these equations on a plot on top of each other. 
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The rest of this section will use this method. 

Example 1 

(adapted from https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/

1.04%3A_Internal_Forces_in_Beams_and_Frames) 

Draw the shear force and bending moment diagrams for the 

cantilever beam supporting a concentrated load of 5 lb at the free 

end 3 ft from the wall. 

1. Draw a FBD of the structure 

 

2. Calculate the reactions using the equilibrium equations (may not 

need to do this if choosing a cantilever beam and using the free side 

for the FBD). 

First, compute the reactions at the support. Since the support 
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at B is fixed, there will be three reactions at that support, namely 

By, Bx, and MB. Applying the conditions of equilibrium suggests the 

following: 

[latex]\sum F_{x}=0: \quad \underline{B_{x}=0}[/latex] 

[latex]\sum F_{y}=0: \quad-5 lb+B_{y}=0[/latex] 

[latex]\qquad \quad \underline{B_{y}=5 lb}[/latex] 

[latex]\sum M_{B}=0: \quad(5 lb )(3 \mathrm{ft})-M=0[/latex] 

[latex]\qquad \quad \underline{M=15 ft \cdot lb}[/latex] 

 

3. Make a cut and add internal forces N V and M using the positive 

sign convention. Depending on the number of loads, you may need 

multiple cuts 

Only 1 cut needed because only 1 load is added at the end. (If it 

were in the middle there would be 2 sections to consider). The value 

x could be 0 to 3 ft. 

4. For shear, find an equation (expression) of the shear that is x 

distance from the origin (often the reaction) for each cut. 

x is the distance from the free end of the cantilever beam to the 

cut. The shearing force at that section is due to the applied load. 

Using the equilibrium equations, 

[latex]\sum F_y = -5 lb - V = 0 \\ \qquad \quad \underline{V = 

- 5 lb} \text{  (- indicates V acts in opposite direction)}[/latex] 

The constant number for shear means that it doesn’t change or 
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vary by x. (If there were a distributed load, x would be part of the 

equation). 

The negative sign indicates the shear actually goes the opposite 

direction. (This is due to the fact that the sign convention for a 

shearing force states that a downward transverse force on the left of 

the section under consideration will cause a negative shearing force 

on that section.) 

5. For the moment, find an equation (expression) of the shear that is 

x distance from the origin (often the reaction) for each cut. 

Here, x is measured from the left. Using sum of the moments 

equations, find an expression for M. You could choose to sum the 

moments about the end point where the load is applied, or you 

could do it at the moving point x. Both take the same effort for this 

problem, so let’s choose the left hand side where the 5 lb are being 

applied. 

[latex]\sum M_L = -Vx - M = 0[/latex] 

[latex]\qquad \quad M = + Vx = (-5 lb) * x[/latex] 

[latex]\qquad \quad \underline{M = -(5lb)x } \text{  (the negative 

sign indicates the arrow goes the other direction.}[/latex] 
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The obtained expression is valid for the entire beam (the region 

0 < x < 3 ft). The negative sign indicates a negative moment, which 

was established from the sign convention for the moment, so the 

moment actually goes in the opposite direction. The moment due 

to the 5 lb force tends to cause the segment of the beam on the 

left side of the section to exhibit a downward concavity, and that 

corresponds to a negative bending moment, according to the sign 

convention for bending moment. 

 

6. Plot these equations on a plot on top of each other. 

Note that because the shearing force is a constant, it must be of 

the same magnitude at any point along the beam. As a convention, 

the shearing force diagram is plotted above or below a line 

corresponding to the neutral axis of the beam, but a plus sign must 

be indicated if it is a positive shearing force, and a minus sign should 

be indicated if it is a negative shearing force. A way to check the 

answer is to ensure the reaction force brings the problem back to 

0. The shear is -5 until the last moment when the reaction force of 

+5lb brings the force to 0. 

Since the function for the bending moment is linear, the bending 

moment diagram is a straight line. Thus, it is enough to use the two 

principal values of bending moments determined at x = 0 ft and 

at x = 3 ft to plot the bending moment diagram. As a convention, 

negative bending moment diagrams are plotted below the neutral 

axis of the beam, while positive bending moment diagrams are 

plotted above the axis of the beam. 
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Notice the units are included in the axes. 

 

Here is a second explanation for how to create shear/moment 

diagrams: 

Shear Diagram 

To create the shear force diagram, we will use the 

following process. 

1. Solve for all external forces acting on the body. 

2. Draw out a free body diagram of the body 

horizontally. Leave all distributed forces as 
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distributed forces and do not replace them with 

the equivalent point load. 

3. Lined up below the free body diagram, draw a 

set of axes. The x-axis will represent the location 

(lined up with the free body diagram above), and 

the y-axis will represent the internal shear force. 

4. Starting at zero at the right side of the plot, you 

will move to the right, pay attention to forces in 

the free body diagram above. As you move right in 

your plot, keep steady except… 

◦ Jump upwards by the magnitude of the 

force for any point forces going up. 

◦ Jump downwards by the magnitude of the 

force for any point forces going down. 

◦ For any uniform distributed forces you 

will have a linear slope where the 

magnitude of the distributed force is the 

slope of the line (positive slopes for upwards 

distributed forces, negative slopes for 

downwards distributed forces). 

◦ For non-uniform distributed forces, the 

shape of the shear diagram plot will be the 

integral of the force function. 

◦ You can ignore any moments or horizontal 

forces applied to the body. 

By the time you get to the left end of the plot, 

you should always wind up coming back to zero. If 

you don’t wind up back at zero, go back and check 

your previous work. 
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To read the plot, you 

simply need to find the location of interest from the free 

body diagram above, and read the corresponding value 

on the y-axis from your plot. Positive numbers 

represent an upwards internal shearing force to the 

right of the cross section and a downwards force on the 

left, and negative numbers indicate a downwards 

internal shearing force to the right of the cross section 

388  |  Statics



and a upwards force on the left. A visual of these forces 

can be seen in the diagram to the right. 

 

Moment Diagram 

The moment diagram will plot out the internal 

bending moment within a horizontal beam that is 

subjected to multiple forces and moments 

perpendicular to the length of the beam. For practical 

purposes, this diagram is often used in the same 

circumstances as the shear diagram, and generally both 

diagrams will be created for analysis in these scenarios. 

To create the moment diagram for a shaft, we will use 

the following process. 

1. Solve for all external forces and moments, 

create a free body diagram, and create the shear 

diagram. 

2. Lined up below the shear diagram, draw a set of 

axes. The x-axis will represent the location (lined 

up with the shear diagram and free body diagram 

above), and the y-axis will represent the internal 

bending moment. 

3. Starting at zero at the right side of the plot, you 

will move to the right, pay attention to shear 

diagram and the moments in the free body 

diagram above. As you move right in your plot, the 

moment diagram will primarily be the integral of 
the shear diagram, except… 

◦ Jump upwards by the magnitude of the 

moment for any negative (clockwise) 
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moments. 

◦ Jump downwards by the magnitude of the 

moment for any positive (counter-
clockwise) moments. 

◦ You can ignore any forces in the free body 

diagram. 

By the time you get to the left end of the plot, 

you should always wind up coming back to zero. If 

you don’t wind up back at zero, go back and check 

your previous work. 

390  |  Statics



To read the plot, you 

simply need to take the find the location of interest 

from the free body diagram above, and read the 

corresponding value on the y-axis from your plot. 

Positive internal moments would cause the beam to bow 

downwards (think a smile shape) negative internal 

moments will cause the beam to bow upwards (think a 

frown shape). You can also see the positive and negative 

internal moments in the figure to the right. 

 

 

Source: Engineering Mechanics, Jacob Moore, et al. 

http://mechanicsmap.psu.edu/websites/

6_internal_forces/6-4_shear_moment_diagrams/

shear_moment_diagrams.html 
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Example 2 

Draw the shearing force and bending moment 

diagrams for the cantilever beam subjected to a 

uniformly distributed load in its entire length, as shown 

in Figure 4.5a. 

Answer: 

Support reactions. 

First, compute the reactions at the support. Since the 

support at B is fixed, there will possibly be three 
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reactions at that support, namely By, Bx, and MB, as 

shown in the free-body diagram in Figure 4.4b. Applying 

the conditions of equilibrium suggests the following: 

 

Shear Force Function 

Let x be the distance of an arbitrary section from the 

free end of the cantilever beam, as shown in Figure 4.5b. 

The shearing force of all the forces acting on the 

segment of the beam to the left of the section, as shown 

in Figure 4.5e, is determined as follows: 

The obtained expression is valid for the entire beam. 

The negative sign indicates a negative shearing force, 

which was established from the sign convention for a 

shearing force. The expression also shows that the 
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shearing force varies linearly with the length of the 

beam. 

Shearing force diagram. Note that because the 

expression for the shearing force is linear, its diagram 

will consist of straight lines. The shearing force at x = 0 

m and x = 5 m were determined and used for plotting 

the shearing force diagram, as shown in Figure 4.5c. As 

shown in the diagram, the shearing force varies from 

zero at the free end of the beam to 100 kN at the fixed 

end. The computed vertical reaction of By at the support 

can be regarded as a check for the accuracy of the 

analysis and diagram. 

 

Bending Moment Function 

The expression for the bending moment at a section 

of a distance x from the free end of the cantilever beam 

is as follows: 

The negative sign indicates a negative moment, which 

was established from the sign convention for moment. 

As seen in Figure 4.5f, the moment due to the 

distributed load tends to cause the segment of the beam 

on the left side of the section to exhibit an upward 

concavity, and that corresponds to a negative bending 

moment, according to the sign convention for bending 

moment. 

Bending moment diagram. Since the function for the 
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bending moment is parabolic, the bending moment 

diagram is a curve. In addition to the two principal 

values of bending moment at x = 0 m and at x = 5 m, the 

moments at other intermediate points should be 

determined to correctly draw the bending moment 

diagram. The bending moment diagram of the beam is 

shown in Figure 4.5d. 

Source: Internal Forces in Beams and Frames, 

Libretexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.04%3A_Internal_Forces_in_Beams_and_Frames 

 

 

The following examples show the shear and moment diagrams 

for each beam. For details on how to solve each, go 

to: https://eng.libretexts.org/Bookshelves/Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/

1.04%3A_Internal_Forces_in_Beams_and_Frames 

Example 3 
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Example 4 
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Example 5 
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Example 6 
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Source: Internal Forces in Beams and Frames, 

Libretexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.04%3A_Internal_Forces_in_Beams_and_Frames 
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6.2.4 Tips & Plot Shapes 

Though there are exceptions, these rules are generally true: 

• +V means increasing M 

• -V means decreasing M 

• When V = 0, that’s max or min M 
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How does each plot start/end? Reactions only if no applied load/

moment at ends: 

• Cantilever: 

◦ At start/reaction:  Nonzero V and M 

◦ At end/unsupported end: 0 for both 

• Simply supported 

◦   For V: Start and end with reaction forces 

◦   For M: Start and end at zero 

• Where are the ‘jumps’ or inflection point where lines change? 

◦ In V, forces ‘jump’ up or down where applied forces are, 

matching the direction they are applied (also reactions) 
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◦ In M, moments jump up or down where applied moments 

are, matching the direction 

• Relationship between graphs 

◦ When there is in increasing slope in M, then Shear should 

be positive 

◦ When there is a decreasing slope in M, then Shear should 

be negative 

◦ When V is positive, M should be increasing 

◦ When V is negative, M should be decreasing 

◦ When intensity is positive, V should be increasing 

◦ When intensity is negative, V should be decreasing 

◦ Inflection points in the M plot (where the slope of the line 

changes from negative to positive & max/min values) 

should be 0 in the V plot 

◦ A zero value in the V plot should produce a max or min 

value in the M plot 

The following figure shows the relationship between the derivatives. 

Remember that the derivative of x2 (quadratic) = x (linear). The 

derivative of x (linear) is a constant number. The derivative of a 

constant number is 0. The derivative of moment is shear, so if you 

have the shape of the moment, use this figure to approximate the 

shape of shear by going down the plots. 

The reverse is true when going from shear to moment. The 

integral of shear is moment. The integral of 0 is a constant number. 

The integral of a constant number is linear. The integral of linear 

is quadratic. (The integral of quadratic is cubic). This progression 

moves up the plots from the bottom to the top. 
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There are a few online programs that can help confirm the shape 

that you found or help you learn how to translate loads into shear 

and moment diagrams. These are not acceptable to use on the 

exam or in homework and have limited free versions. This is not an 

endorsement of any of the sites, just showing learning tools. 
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• https://skyciv.com/free-beam-calculator/ 

• https://clearcalcs.com/freetools/beam-analysis/au 

• https://beamguru.com/beam/ 

 

Key Takeaways 

Basically: Shear / Moment diagrams graphically display 

the internal loads along a beam. 

Application: This can help you identify the major stress 

points to provide a safer design. 

Looking Ahead: You will use this more in your structures 

class. 
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6.3 Examples 

Here are examples from Chapter 6 to help you understand these 

concepts better. These were taken from the real world and supplied 

by FSDE students in Summer 2021. If you’d like to submit your own 

examples, please send them to the author eosgood@upei.ca. 

Example 6.3.1: Internal Forces – Submitted 
by Emma Christensen 

1. Problem 

The setup that holds the solar panels at the 

UPEI FSDE is modeled below. Considering 

beam S (1.9 m length), find the internal forces 

at point C. Assume the intensity of the solar 

panel on the beam is 200 N/m. 

Sketch: 
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Model: 

2. Draw 
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Free-body diagram: 

3. Knowns and Unknowns 

Knowns 

• w = 220 N/m 

• OA = 0.5 m 

• AC = 0.2 m 

• AB = 0.4 m 

• L = 1.9 m 

Unknowns: Nc, Vc, Mc 

4. Approach 

Use equilibrium equations. First solve for reaction 

forces, then make a cut at C and solve for the internal 

forces. 

5. Analysis 

$$w=\frac{F}{L}\\F=wL\\F_R=220N/m\cdot 

1.9m\\F_R=418N\\\sum F_X=0=B_X$$ 
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Find reaction forces: 

$$\sum M_A=0=B_y(0.4m)-

F_R(0.55m)\\(0.4m)B_y=418N(0.55m)\\B_y=\frac{229.

9 N\cdot m}{0.4m}\\B_y=574.75N$$ 

$$\sum F_y=0=-F_R+A_y+B_y\\A_y=F_R-

B_y\\A_y=418N-574.74N\\A_y=-156.75N$$ 

The answer we got for Ay is negative, which means 

that the arrow should be drawn in the other direction. 

We will change it for our next sketch. 

Make a cut at C: 

Now solve for the internal forces: 

$$\sum F_x=0\:\:;\:\:N_c=0\\\sum F_y=0=-A_y-

V_c-(w\cdot L)\\V_c=-156.75N-(220N/m\

cdot0.95m)\\V_c=-346.75 N\\\sum 

M_c=A_y(0.2m)+M_c+(F_{Rc}\cdot 
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0.475m)\\M_c=-156.75 N (0.2m)-(220N/m\cdot 0.95m\

cdot 0.475m)\\M_c=-130.625N\cdot m$$ 

Final FBD, showing the arrows in the correct 

directions: 

6. Review 

It makes sense that Ay and By are in different 

directions, because the resultant force Fr of the solar 

panel on the beam is not between A and B. It also makes 

sense that the moment at C is in the clockwise direction 

rather than the counterclockwise directions, when you 

think about the direction of the forces applied to the 

beam. 

 

Example 6.3.2: Shear/Moment Diagrams – 
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Submitted by Deanna Malone 

1. Problem 

A beam that is simply supported has two 

point loads acting on it. One acts 2 m from 

point A and the other acts at 2.5 m from C. 

Point B is in the middle of the beam. The first 

point load is 500 N and the second is 300 N. 

What are the internal forces at point B? Solve 

for reaction forces and include a shear/

moment diagram. 
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2. Draw 

Sketch: 

Free-body diagram: 

3. Knowns and Unknowns 

Knowns: 
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• F1 = 500 N 

• F2 = 300 N 

Unknowns: Ay, Ax, Cy, VB, MB, NB 

4. Approach 

Shear/moment equations, EOM equations 

5. Analysis 

Solve for reaction forces: 

(Ax, Cy) 

\begin{aligned} 

\sum F_{x}=0=A_{x}=0 \\ 

\sum M_{A}=0 &=-F_{1} \cdot 2 m-F_{2} \cdot 5.5 

m+C_{y} \cdot 8 m \\ 

C_{y}=&+F_{1} \cdot 2 m+F_{2} \cdot 5.5 m \\ 

C_{y} &=\frac{500 N \cdot 2 m+300 N \cdot 5.5 m}{8 

m} \\ 

C_{y} &=331.25 \mathrm{~N} 

\end{aligned} 

(Ay) 

\begin{aligned} 

\sum F_{y}=0 &=A_{y}+C_{y}-F_{1}-F_{2} \\ 

A_{y} &=F_{1}+F_{2}-C_{y} \\ 

A_{y} &=500 \mathrm{~N}+300 \mathrm{~N} – 331.25 

\mathrm{~N} \\ 

A_{y} &=468.75 \mathrm{~N} 

\end{aligned} 

Cut 1: at B 
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\begin{aligned} 

\sum F_{X}=0=A_{X} &+N_{B}=0 \\ 

& N_{B}=0 \\ 

\sum F_{y}=0 &=A_{y}-V_{B}-F_{1} \\ 

V_{B} &=A_{y}-F_{1} \\ 

V_{B} &=468.75 N – 500 N \\ 

V_{B}=-31.25 N 

\end{aligned} 

\begin{aligned} 

\sum M_{B}=& 0=-A_{y}(4 m)+F_{1}(2 m)+M_{B} \\ 

& M_{B}=A_{y}(4 m)-F_{1}(2 m) \\ 

& M_{B}=468.75 N(4 m)-500 N(2 m) \\ 

M_{B} &=875 \mathrm{~N} \cdot \mathrm{m} 

\end{aligned} 

Cut 2: At the point where F1 is applied 
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\begin{aligned} 

\sum M_{1}=0 &=-A_{y}(2 m)+M_{1}=0 \\ 

M_{1} &=A_{y}(2 m) \\ 

M_{1} &=468.75 N(2 m) \\ 

M_{1} &=937.5 \mathrm{~N} \cdot m 

\end{aligned} 

Cut 3: At the point where F2 is applied 

\begin{aligned} 

\sum M_{2}=0 =-A_{y}(5.5 \mathrm{~m})+F_{1}(3.5 

\mathrm{~m})+M_{2} \\ 

M_{2} &=A_{y}(5.5 \mathrm{~m})-F_{1}(3.5 

\mathrm{~m}) \\ 

M_{2} &=468.75 \mathrm{~N}(5.5 \mathrm{~m})-500 

\mathrm{~N}(3.5 \mathrm{~m}) \\ 

M_{2} &=828.125 \mathrm{~N} \cdot \mathrm{m} 

\end{aligned} 
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Answer: NB = 0, VB = -31.25 N, MB = 875 Nm 

6. Review 

The reaction forces make sense as they offset the 

applied forces. The shear/moment diagrams returned to 

zero so they are correct too. The moment found at B is 

in the moment diagram, it is smaller than the maximum. 

 

6.3 Examples  |  415





CHAPTER 7: INERTIA 

This chapter is a major preparation for objects that rotate during 

dynamics class. We will cover cg, inertia, composite shapes, and 

rotating about axes other than the centre of mass (cm) using the 

parallel axis theorem. Here are the sections in this Chapter: 

• 7.1 Center of Mass: Single Objects – How to find the cm of a 

single object 

• 7.2 Center of Mass: Composite Shapes – Finding the cm for 

multiple objects or complex objects 

• 7.3 Types of Inertia – Wait – there’s more than one type of 

inertia! 

• 7.4 Mass Moment of Inertia – How to calculate the mass 

moment of inertia for rotational motion for single objects 

• 7.5 Inertia Intro: Parallel Axis Theorem – Calculating the inertia 

for single objects rotating about a different axis or for 

composite problem 

• 7.6 Examples – Examples from your peers 

Here are the important equations for this chapter: 
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7.1 Center of Mass: Single 
Objects 

To start, let’s calculate the center of mass! This is a weighted 

function, similar to when we found the location of the resultant 

force from multiple distributed loads and forces. 

[latex]\bar{x}=\frac{m_1*x_1}{m_1+m_2}+\frac{m_2*x_2}{m_1

+m_2}[/latex] 

When the density is the same throughout a shape, the center of 

mass is also the centroid (geometric center). 

7.1.1 Center of Mass of Two Particles 

Consider two particles, having one and the same mass 

m, each of which is at a different position on the x axis 

of a Cartesian coordinate system. 

Common sense tells you that the average position of 
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the material making up the two particles is midway 

between the two particles. Common sense is right. We 

give the name “center of mass” to the average position 

of the material making up a distribution, and the center 

of mass of a pair of same-mass particles is indeed 

midway between the two particles. How about if one of 

the particles is more massive than the other? One would 

expect the center of mass to be closer to the more 

massive particle, and again, one would be right. To 

determine the position of the center of mass of the 

distribution of matter in such a case, we compute a 

weighted sum of the positions of the particles in the 

distribution, where the weighting factor for a given 

particle is that fraction, of the total mass, that the 

particle’s own mass is. Thus, for two particles on the x 

axis, one of mass m1, at x1, and the other of mass m2, at 

x2, 

the position x of the center of mass is given by 

equation 8-1: 

[latex]\bar{x}=\frac{m_1*x_1}{m_1+m_2}+\frac{m_2

*x_2}{m_1+m_2}[/latex] 

 

Note that each weighting factor is a proper fraction 
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and that the sum of the weighting factors is always 1. 

Also note that if, for instance, m1 is greater than m2, 

then the position x1 of particle 1 will count more in the 

sum, thus ensuring that the center of mass is found to 

be closer to the more massive particle (as we know it 

must be). Further note that if m1 = m2, each weighting 

factor is 1/2, as is evident when we substitute m for 

both m1 and m2 in equation 8-1: 

$$\bar{x}=\frac{m}{m+m}x_1+\frac{m}{m+m}x_2\\\

bar{x}=\frac{1}{2}x_1+\frac{1}{2}x_2\\\bar{x}=\frac{x_

1+x_2}{2}$$ 

 

The center of mass is found to be midway between 

the two particles, right where common sense tells us it 

has to be. 

Source: Calculus-Based Physics 1, Jeffery W. Schnick. 

p142, https://openlibrary.ecampusontario.ca/

catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 

 

Below is a more visual representation of where the COM would be 

for two different weighing particles. 

7.1 Center of Mass: Single Objects  |  421

https://openlibrary.ecampusontario.ca/catalogue/item/?id=ce74a181-ccde-491c-848d-05489ed182e7
https://openlibrary.ecampusontario.ca/catalogue/item/?id=ce74a181-ccde-491c-848d-05489ed182e7
https://openlibrary.ecampusontario.ca/catalogue/item/?id=ce74a181-ccde-491c-848d-05489ed182e7


Source (image): Two_body_jacobi.svg: CWitte, from JPG by 
Brews oharederivative work: WillowW via Wikimedia 
Commons https://zh.wikipedia.org/wiki/
File:Jacobi_coordinates.svg 

 

A second explanation: 

The most common real-life example of a system like 

this is a playground seesaw, or teeter-totter, with 

children of different weights sitting at different 

distances from the center. On a seesaw, if one child sits 

at each end, the heavier child sinks down and the lighter 

child is lifted into the air. If the heavier child slides in 

toward the center, though, the seesaw balances. 

Applying this concept to the masses on the rod, we note 

that the masses balance each other if and only if m1d1 = 

m2d2. 
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This idea is not limited just to two point masses. In 

general, if n" role="presentation">𝑛 masses, 

m1,m2,…,mn," role="presentation">𝑚1, 𝑚2,…,𝑚𝑛, are 

placed on a number line at points x1,x2,…,xn," 

role="presentation">𝑥1,𝑥2,…,𝑥𝑛, respectively, then the 

center of mass of the system is given by: 

$$ \bar x=\frac{\sum_{i=1}^n m_i 

x_i}{\sum_{i=1}^nm_i}$$ 

 

Example 1: 

Suppose four point masses are placed on a number line 

as follows: 

• m1=30kg," role="presentation">𝑚1=30𝑘𝑔, placed 

at x1=−2m" role="presentation">𝑥1=−2𝑚 

• m2=5kg," role="presentation">𝑚2=5𝑘𝑔, placed at 

x2=3m" role="presentation">𝑥2=3𝑚 

• m3=10kg," role="presentation">𝑚3=10𝑘𝑔,placed 

at x3=6m" role="presentation">𝑥3=6𝑚 

• m4=15kg," role="presentation">𝑚4=15𝑘𝑔,placed 

at x4=−3m." role="presentation">𝑥4=−3𝑚. 

Solution 

Find the moment of the system with respect to the 

origin and find the center of mass of the system. 

First, we need to calculate the moment of the system 

(the top part of the fraction): 
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[latex]M =\sum_{i=1}^4 m_i *x_i \\\qquad \quad = 

(30kg)*(-2m) + (5kg)*(3m)+(10kg)*(6m)+(15kg)*(-3m) 

\\\qquad\quad = (-60+15+60-45)kg*m \\\qquad\

quad = -30 kg*m[/latex] 

 

Now, to find the center of mass, we need the total 

mass of the system: 

$$ m = \sum_{i=1}^4 m_i  = (30+5+10+15) kg = 60kg $$ 

 

Then we have [latex]\bar{x} = \frac{M}{m} = \frac{-30 

kg*m}{60kg} = -0.5 m[/latex] 

 

The center of mass is located 1/2 m to the left of the 

origin. 

 

Source: “Moments and Centers of Mass” by 

LibreTexts, https://eng.libretexts.org/@go/page/67237 

7.1.2 Center of Mass in 2D & 3D 

When we are looking at multiple objects in 2D or 3D, we perform the 

center of mass equation multiple times in the x, y, and z directions. 

$$ \bar x=\frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^nm_i} 

\qquad \bar y=\frac{\sum_{i=1}^n m_i y_i}{\sum_{i=1}^nm_i} 

\qquad \bar z=\frac{\sum_{i=1}^n m_i z_i}{\sum_{i=1}^nm_i}$$ 
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In some sense, one can think about the center of mass 

of a single object as its “average position.” Let’s consider 

the simplest case of an “object” consisting of two tiny 

particles separated along the x-axis, as seen below: 

If the two particles have equal mass, then it’s pretty 

clear that the “average position” of the two-particle 

system is halfway between them. If the masses of the 

two particles are different, would the “average position” 

still be halfway between them? Perhaps in some sense 

this is true, but we are not looking for a geometric 

center, we are looking for the average placement of 

mass. If m1 has twice the mass of m2, then when it 

comes to the average placement of mass, m1 gets “two 

votes.” With more of the mass concentrated at the 

position x1 than at x2, the center of mass should be 

closer to x1 than x2. We achieve the perfect balance by 

“weighting” the positions by the fraction of the total 

mass that is located there. Accordingly, we define as the 

center of mass: 

$$\bar 

x_{cm}=(\frac{m_1}{m_1+m_2})x_1+(\frac{m_2}{m_1+

m_2})x_2=\frac{m_1x_1+m_2x_2}{M_{system}}$$ 

If there are more than two particles, we simply add all 

of them into the sum in the numerator. To extend this 

definition of center of mass into three dimensions, we 

simply need to do the same things in the y and 
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z directions. A position vector for the center of mass of 

a system of many particles would then be: 

$$\vec{r}_{cm}=\bar x_{cm}\underline{\hat{i}}+\bar 

y_{cm}\underline{\hat{ j}}+ \bar 

z_{cm}\underline{\hat{k}}\\=\frac{[m_1 x_1+m_2 

x_2+…]}{M}\underline{\hat{i}}+\frac{[m_1y_1+m_2y_2

+…]}{M}\underline{\hat{ j}}+\frac{[m_1 z_1+m_2 

z_2+…]}{M}\underline{\hat{k}}\\=\frac{m_1[x_1\

underline{\hat{i}}+y_1\underline{\hat{ j}}+z_1\

underline{\hat{k}}]+m_2[x_2\underline{\hat{i}}+y_2\

underline{\hat{ j}}+z_2\

underline{\hat{k}}]+…}{M}\\=\frac{m_1\vec r_1+m_2\

vec r_2+…}{M}$$ 

Source: ” Center of Mass” by Tom Weideman, 

https://phys.libretexts.org/Courses/

University_of_California_Davis/

UCD%3A_Physics_9A__Classical_Mechanics/

4%3A_Linear_Momentum/4.2%3A_Center_of_Mass 

Example 2: 

Suppose three point masses are placed in the x-y plane 

as follows (assume coordinates are given in meters): 

• m1 = 2 kg placed at (-1, 3)m, 
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• m2 = 6 kg placed at (1, 1)m, and 

• m3 = 4 kg placed at (2, -2)m. 

Find the center of mass of the system. 

Solution 
First we calculate the total mass of the system: 

$$ m = \sum_{i=1}^3 m_i  = (2 + 6 + 4) kg = 12 kg $$ 

Next we find the moments with respect to the x- and 

y- axes: 

[latex]M_x =\sum_{i=1}^3 m_i *x_i \\\qquad 

\quad = (2kg)*(-1m) + (6kg)*(1m)+(4kg)*(2m) \\\qquad\

quad = (-2+6+8)kg*m \\\qquad\quad = 12 kg*m[/latex] 

[latex]M_y =\sum_{i=1}^3 m_i *y_i \\\qquad 

\quad = (2kg)*(3m) + (6kg)*(1m)+(4kg)*(-2m) \\\qquad\

quad = (6+6-8)kg*m \\\qquad\quad = 4 kg*m[/latex] 

Then we have 

[latex]\bar{x} = \frac{M_x}{m} = \frac{12 kgm}{12m} = 

1  m[/latex] 

[latex]\bar{y} = \frac{M_y}{m} = \frac{4 kgm}{12m} = 

0.333 m[/latex] 

 

The center of mass of the system is: (1, 0.333)m. 

Source: “Moments and Centers of Mass” by 

LibreTexts, https://eng.libretexts.org/@go/page/67237 

7.1.3 The Center of Mass of a Thin Uniform 
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Rod (Calculus Method) 

Quite often, when the finding of the position of the 

center of mass of a distribution of particles is called for, 

the distribution of particles is the set of particles 

making up a rigid body. The easiest rigid body for which 

to calculate the center of mass is the thin rod because it 

extends in only one dimension. (Here, we discuss an 

ideal thin rod. A physical thin rod must have some 

nonzero diameter. The ideal thin rod, however, is a good 

approximation to the physical thin rod as long as the 

diameter of the rod is small compared to its length.) 

In the simplest case, the calculation of the position of 

the center of mass is trivial. The simplest case involves a 

uniform thin rod. A uniform thin rod is one for which 

the linear mass density µ, the mass-per-length of the 

rod, has one and the same value at all points on the rod. 

The center of mass of a uniform rod is at the center of 

the rod. So, for instance, the center of mass of a uniform 

rod that extends along the x axis from x = 0 to x = L is at 

(L/2, 0). 

The linear mass density µ, typically called linear 

density when the context is clear, is a measure of how 

closely packed the elementary particles making up the 

rod are. Where the linear density is high, the particles 

are close together. 

To picture what is meant by a non-uniform rod, a rod 

whose linear density is a function of position, imagine a 

thin rod made of an alloy consisting of lead and 
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aluminum. Further imagine that the percentage of lead 

in the rod varies smoothly from 0% at one end of the 

rod to 100% at the other. The linear density of such a 

rod would be a function of the position along the length 

of the rod. A one-millimeter segment of the rod at one 

position would have a different mass than that of a one-

millimeter segment of the rod at a different position. 

People with some exposure to calculus have an easier 

time understanding what linear density is than calculus-

deprived individuals do because linear density is just the 

ratio of the amount of mass in a rod segment to the 

length of the segment, in the limit as the length of the 

segment goes to zero. Consider a rod that extends from 

0 to L along the x axis. Now suppose that ms(x) is the 

mass of that segment of the rod extending from 0 to x 

where x ≥ 0 but x < L. Then, the linear density of the rod 

at any point x along the rod, is just dm8/dx evaluated at 

the value of x in question. 

 

Source: Calculus-Based Physics 1, Jeffery W. Schnick. 

p143, https://openlibrary.ecampusontario.ca/
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7.1.4 The Center of Mass of a Non-Uniform 
Rod 

Now that you have a good idea of what we mean by 

linear mass density, we are going to illustrate how one 

determines the position of the center of mass of a non-

uniform thin rod by means of an example. 

Example 3: 

Find the position of the center of mass of a thin rod that 

extends from 0 to 0.890 m along the x axis of a Cartesian 

coordinate system and has a linear density given by µ = 

0.650 kg/m3 

In order to be able to determine the position of the 

center of mass of a rod with a given length and a given 

linear density as a function of position, you first need to 

be able to find the mass of such a rod. To do that, one 

might be tempted to use a method that works only for 

the special case of a uniform rod, namely, to try using m 
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= µL with L being the length of the rod. The problem 

with this is, that µ varies along the entire length of the 

rod. What value would one use for µ ? One might be 

tempted to evaluate the given µ at x = L and use that, 

but that would be acting as if the linear density were 

constant at µ = µ(L). It is not. In fact, in the case at hand, 

µ(L) is the maximum linear density of the rod, it only has 

that value at one point on the rod. 

Instead, using integration, we find the equation: 

[latex]m=\frac{bL^3}{3}[/latex] 

That can now be used to calculate the mass of a non-

linear rod. The value of L is given as 0.890 m and we 

defined b to be the constant 0.650 kg/m3, therefore 

$$m=\frac{0.650\

frac{kg}{m^3}(0.890m)^3}{3}\\m=0.1527kg$$ 

That’s a value that will come in handy when we 

calculate the position of the center of mass. 

Now, when we calculated the center of mass of a set 

of discrete particles (where a discrete particle is one 

that is by itself, as opposed, for instance, to being part of 

a rigid body) we just carried out a weighted sum in 

which each term was the position of a particle times its 

weighting factor and the weighting factor was that 

fraction, of the total mass, represented by the mass of 

the particle. We carry out a similar procedure for a 

continuous distribution of mass such as that which 

makes up the rod in question. 

Once again, using integration, we find the equation: 

[latex]\bar{x}=\frac{bL^4}{4m}[/latex] 
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Now we substitute variables with values; the mass m 

of the rod that we found earlier, the constant b that we 

defined to simplify the appearance of the linear density 

function, and the given length L of the rod: 

$$m= \frac{\left( 0.650\frac{kg}{m^3} \right) 

(0.890m)^4}{4(0.1527kg)}\\\bar{x}=0.668m$$ 

This is our final answer for the position of the center 

of mass. Note that it is closer to the denser end of the 

rod, as we would expect. 

Source: Calculus-Based Physics 1, Jeffery W. Schnick. 

p144, https://openlibrary.ecampusontario.ca/

catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 

 

 

Key Takeaways 

Basically: When there are multiple objects, the center of 

mass is the location in the x, y, and z directions between 

the objects. 

Application: To calculate the acceleration or use F = ma, 

m is the total mass at the center of mass. 
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Looking Ahead: The next section will look at how to 

calculate the center of mass for a complex object. 
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7.2 Center of Mass: 
Composite Shapes 

Instead of integrating to find the center of mass, we can split an 

object up into recognizable shapes to determine the center of mass. 

This is faster than the integration method, and allows for many 

different ways to find the answer. 

In this section, the terms ‘centroid’ and ‘center of mass’ are used, 

somewhat interchangeably. The centroid is the geometric center. 

The center of mass takes into account the density of an object. If the 

density is the same throughout an object, then the centroid is the 

same as the center of mass. For the rigid beams we will be looking at 

in statics, the centroid is at the same location as the center of mass. 

7.2.1 Centroid Tables 

We use the centroid tables that are listed below to combine the 

locations of the centers of mass for each shape. Approximations are 

needed as real life objects are rarely perfectly square or circular, but 

if they are symmetric, it makes it easier to approximate. 

The locations of the center of mass (rcm) are as follows. The 

source for the images are from Jacob Moore et al. 

http://mechanicsmap.psu.edu/websites/centroidtables/

centroids2D/centroids2D.html 
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Shape 

Images from Jacob Moore et al. 
http://mechanicsmap.psu.edu/websites/
centroidtables/centroids2D/
centroids2D.html 

rcm 

Rectangle 

[latex]Area = bh[/latex] 

 
[latex]r_{cm} = 

\left[\frac{b}{2}, 
\frac{h}{2}\right][/latex] 

Right 
Triangle 

[latex]Area = 
\frac{1}{2}bh[/latex] 

 
[latex]r_{cm} = 

\left[\frac{b}{3}, 
\frac{h}{3}\right][/latex] 

Triangle 

[latex]Area = 
\frac{1}{2}bh[/latex] 

 
[latex]r_{cm} = 

\left[\frac{b}{2}, 
\frac{h}{3}\right][/latex] 
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Circle 

[latex]Area =  \pi r^2[/latex] 

 
[latex]r_{cm} = \left[0,0\

right][/latex] 

Circular 
Annulus 

[latex]Area =  \pi 
(r_o^2-r_i^2) 
\\r_o=\text{outer 
radius}\\r_i=\text{inner 
radius}[/latex] 

 
[latex]r_{cm} = \left[0,0\

right][/latex] 

Semicircle 

[latex]Area = 
\frac{\pi}{2}r^2[/latex] 

 
[latex]r_{cm} = 

\left[0,\frac{4}{3\pi}r\
right][/latex] 
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Quarter 
Circle 

[latex]Area = 
\frac{\pi}{4}r^2[/latex] 

 
[latex]r_{cm}=\left[\frac{4}{

3\pi}r,\frac{4}{3\pi}r\
right][/latex] 

Ellipse 

[latex]Area = \pi a b[/latex] 

 
[latex]r_{cm} = \left[0,0\

right][/latex] 
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Example 1: A Single Object 

To find the cm, select the appropriate shape from the above table. 

. 

. 

. 

. 

. 
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Use the equation to solve for rcm. 

This is an appropriate answer as it is less than the midpoint, 

where it would be for a square: 

[latex]\underline{\vec r}_{cm} = [3.4cm, 3.4cm, 0][/latex]. 

7.2.2 Composite Shapes 

To find the center of mass of an object, you: 

1. Define an origin 

2. Split the object up into recognizable shapes 

3. Find the center of mass (cm) of each shape from the origin 

4. Calculate the mass of each part: [latex]\rho = 

\frac{m}{V}[/latex] (To find the centroid, this step can be 

skipped and only the area or volume is used). 

5. Use the weighted cm equations to find the x cm. Repeat for y 
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and z. 

$$ \bar x=\frac{\sum m_i x_i}{\sum m_i} \qquad \bar 

y=\frac{\sum m_i y_i}{\sum m_i} \qquad \bar z=\frac{\sum m_i 

z_i}{\sum m_i}$$ 

 

Start the process by labeling an origin point and axes 

on your shape. It will be important to measure all 

locations from the same point. Next, we must break our 

complex shape down into several simpler shapes. This 

may include areas or volumes (which we will count as 

positive areas or volumes) or holes (which we will count 

as negative areas or volumes). Each of these shapes will 

have a centroid (𝐶) or center of mass (𝐺) listed on the 

diagram. 
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For the shape shown at the top, we can break it down 
into a rectangle (1), a right triangle (2), and a circular 
hole (3). Each of these simple shapes is something we 
have listed in the centroid table to the right. 

Once we have identified the different parts, we will 

create a table listing the area or volume of each piece, 

and the 𝑥 and 𝑦 centroid coordinates (or 𝑥, 𝑦, and 𝑧 

coordinates in 3D). It is important to remember that 

each coordinate you list should be relative to the same 

base origin point that you drew in earlier. You may need 

to mentally adjust diagrams in the centroid tables so 

that the shape is oriented in the right direction, and 

account for the placement of the shape relative to the 

axes in your diagram. 
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For each of the shapes, we need to find the area and the x and y 
coordinates of the centroid. Remember to find the centroid 
coordinates relative to a single set of axes that is the same for all 
shapes. 

 

Once you have the areas and centroid coordinates for 

each shape relative to your origin point, you can find 

the 𝑥 and 𝑦coordinate of the centroid for the overall 

shape with the following formulas. Remember that areas 

or volumes for any shape that is a hole or cutout in the 

design will be a negative area in your formula. 

$$ \bar x=\frac{\sum_{i=1}^n m_i 

x_i}{\sum_{i=1}^nm_i} \qquad \bar 

y=\frac{\sum_{i=1}^n m_i y_i}{\sum_{i=1}^nm_i} $$ 
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This generalized formula to find the centroid’s 𝑥-

location is simply Area 1 times [latex]\bar x_1[/latex] 

plus Area 2 times [latex]\bar x_2[/latex], plus Area 3 

times [latex]\bar x_3[/latex], adding up as many shapes 

as you have in this fashion and then dividing by the 

overall area of your combined shape. The equations are 

the same for the 𝑦-location of the overall centroid, 

except you will instead be using [latex]\bar y[/latex]-

values in your equations. 

For centroids in three dimensions we will simply use 

volumes in place of areas, and we will have a 𝑧 

coordinate for our centroid as well as the 𝑥 and 𝑦 

coordinates. 

 

Source:  Jacob Moore et al. 

http://mechanicsmap.psu.edu/websites/

A2_moment_intergrals/method_of_composite_parts/

methodofcompositeparts.html 

Example 2 – A Composite Object 

For the following C shape, where is the center of mass? 
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This example used the density to calculate mass. To find the 

centroid, the area could have been used instead of the mass. 

However to find the center of mass, the density was used to 

calculate the mass of each object individually: [latex]\rho = 

\frac{m}{V}[/latex]. 

 

Example 3: Using Subtraction instead of Addition 

For the following C shape, where is the center of mass? (Use 

different shapes than above). 
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The same answer is reached! This method involved only 2 shapes 

instead of 3. 

 

There are more examples at http://mechanicsmap.psu.edu/
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websites/A2_moment_intergrals/method_of_composite_parts/

methodofcompositeparts.html with pdfs and video solutions. 

 

 

Key Takeaways 

Basically: When there are complicated shapes, the 

center of mass can be found by breaking the shape 

up into better known shapes. 

Application: To calculate the inertia of an object 

rotating about its center of mass, you will need to 

know where the center of mass is. 

Looking Ahead: The next section will look at types 

of inertia. 
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7.3 Types of Inertia 

There are multiple kinds of inertia. In this course, when we talk 

about inertia, we usually refer to mass moment of inertia. For this 

course, you need to know the names of three types of moment of 

inertia (MOI), when to use each, and the units for each. 

Area moment of inertia is used in structures to determine how 

stiff a beam is, or how much it will deflect. The unit is m4 or ft4. 

Source: Sonitron Support https://commons.wikimedia.org/wiki/
File:Piezo_bending_principle.jpg 

 

Product moment of inertia is a shaft’s resistance to torsion (or 

twisting). The unit is m4 or ft4. 

Source: Orion8 https://commons.wikimedia.org/wiki/
File:Twisted_bar.png 
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Source: K. “bird” 
https://commons.wikimedia.o
rg/wiki/
File:Elena_Sokolova_04_NH
K_2.jpg 

Source: Sandro Halank 
https://commons.wikimedia.org/
wiki/
File:2020-01-11_Women%27s_Single_
Figure_Skating_Short_Program_(202
0_Winter_Youth_Olympics)_by_San
dro_Halank%E2%80%93668.jpg 

 

Mass moment of inertia is the rotational equivalent to mass. A 

really heavy object is hard to move, hence it resists motion. An 

object with a really big inertia is hard to rotate, hence it resists 

rotation. An inertia is a quantity of how mass is distributed around a 

body, such as an ice skater spinning with their arms in or spread out. 

The unit is kgm2 or slugft2. We will talk more about mass moment of 

inertia in the next sections. 

 

 

 

 

 

 

 

 

Here is a table summarizing the three 

types of inertia: 
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A moment integral, as the name implies, is the 

general concept using integration to determine the net 

moment of a force that is spread over an area or volume. 

Because moments are generally a force times a distance, 

and because distributed forces are spread out over a 

range of distances, we will need to use calculus to to 

determine the net moment exerted by a distributed 

force. 

$$ \int M = \int f (d) * d $$ 

Beyond the most literal definition of a moment 

integral, the term ‘moment integral’ is also general 

applied the process of integrating distributed areas or 

masses that will be resiting some moment about a set 

axis. 

Some of the applications of moment integrals include: 

1. Finding point loads that are equivalent to 

distributed loads (the equivalent point load) 

2. Finding the centroid (geometric center) or 

center of mass for 2D and 3D shapes. 

3. Finding the area moment of inertia for a beam 

cross section, which will be one factor in that 

beam’s resistance to bending. 

4. Finding the polar area moment of inertia for a 

shaft cross section, which will be one factor in 

that shaft’s resistance to torsion. 

5. Finding the mass moment of inertia, indicating 

a body’s resistance to angular accelerations. 

When looking at moment integrals, there are number 

of different types of moment integrals. These will 
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include moment integrals in one dimension, two 

dimensions, and three dimensions, moment integrals of 

force functions, of areas/volumes, or of mass 

distributions, first order or second order moment 

integrals, and rectangular or polar moment integrals. 

Any combination of these different types is possible 

(for example a first, rectangular, 2D, area moment 

integral or a second, polar, 3D, mass moment integral). 

However, only some combinations will have practical 

applications and will be discussed in detail on future 

pages. 

1D, 2D, and 3D Moment Integrals 

Technically we can take the moment integral in any 

number of dimensions, but for practical purposes we 

will never deal with moment integrals beyond 3 

dimensions. The number of dimensions will affect the 

complexity of the calculations (with 3D Moment 

integrals being the more involved than 1D or 2D moment 

integrals), but the nature of the problem will dictate the 

dimensions needed. Often this is not listed in the type of 

moment integral, requiring you to assume the type 

based on the context of the problem. 

Force, Area/Volume, and Mass Moments Integrals 

The next distinction in moment integrals is regard 
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what we are integrating. Generally, we can integrate 

force functions over some distance, area, or volume, we 

can integrate the area or volume function itself, or we 

can integrate the mass distribution over the area or 

volume. Each of these types of moment integrals has a 

different purpose and will start with a different 

mathematical function to integrate, but the integration 

process beyond that will be very similar. 

First vs. Second Moments Integrals 

For moment integrals we will always be multiplying 

the force function, area or volume function, of the mass 

distribution function by a distance, or a distance 

squared. First moment integrals just multiply the initial 

function by the distance, while second moment 

integrals multiply the function by the distance squared. 

Again the type of moment integral we will use depends 

upon our application, with things like equivalent point 

load, centroids, and center of mass relying on first 

moment integrals, and area moments of inertia, polar 

moments of inertia, and mass moments of inertia relying 

on second moment integrals. As you can probably 

deduce from this list, second moment integrals, are 

often labeled as a ‘moment of inertia‘ 

Rectangular vs. Polar Moments Integrals 

Finally we will talk about rectangular moments 
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integrals versus polar moments integrals. This is a 

difference in how we define the distance in our moment 

integral. Let’s start with the distinction in 2D. If our 

distance is measured from some axis (for example the x-

axis, or the y-axis) then it is a rectangular moment 

integral. If on the other hand the distance is measured 

from some point (such as the origin) then it is a polar 

moment integral. 

In 2D, if we measure the distance from some axis (similar to what 
x and y do here) then we have a rectangular moment integral. If 
we measure the distance from some point (such as r does) then 
we have a polar moment integral. 

This distinction is important for how we will take the 

integral. For rectangular moment integrals we will move 

left to right or bottom to top. For polar moment 

integrals we will instead take the integral by radiating 

out from the center point. 
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In three dimensional problems, the definitions change 

slightly. For rectangular moment integrals the distance 

will be measured from some plane (such as the xy plane, 

xz plane, or yz plane). Again we will integrate left to 

right, bottom to top, or now back to front with distances 

corresponding to the x, y or z coordinates of that point. 

For a polar moment integrals the distance will be 

measured from some axis (such as the the x, y, or z axis), 

and we will integrate by radiating outward from that 

axis. 

Source: Jacob Moore et al. 

http://mechanicsmap.psu.edu/websites/

A2_moment_intergrals/moment_integrals/

momentintegrals.html 

 

 

Key Takeaways 

Basically: There are many types of inertia, including area, 

product, and mass. They have different units and represent 

different physical quantities of an object. 

Application: A beam’s resistance to bending (area moment 

of intertia), a shaft’s resistant to torsion (product/polar 
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moment of inertia), and an object’s resistance to rotating 

(mass moment of inertia). 

Looking Ahead: Area and product moment of inertia will 

be covered more in structures. Mass moment of inertia is 

used in statics nd dynamics. The next section will look at 

how to calculate the mass moment of inertia. 
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7.4 Mass Moment of Inertia 

7.4.1 Intro to Mass Moment of Inertia 

Mass moment of inertia, or inertia as it will be referred to from here 

on, is resistance to rotation. The bigger the inertia, the slower the 

rotation. [latex]\sum M = I\alpha[/latex]. Inertia is always positive 

and has units of kgm2 or slugft2. 

For an infinitesimal unit of mass, the inertia depends on how far it 

is from the axis of rotation. 

$$ I = \int_m r^2dm $$ 

As shown in this image, each little dm at r distance from the axis 

of rotation (y) is added up (through integration). If r is bigger, the 

inertia is bigger. 

If there is more mass closer to the axis of rotation, the inertia 

is smaller. A skill that you can develop is your visualization of the 

rotation about each axis. As shown in the following figure, rotating 

about the different axes will produce different types of rotation. You 

can imagine sticking your pencil into an object and twisting along 
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that axis. In this image, rotation about the y axis and x axis produce 

different types of rotation. Due to the symmetry, rotation about the 

x axis and z axis looks identical. 

 

The red r’s in this image show the distance that is being measured 

when adding up each little infinitesimal dm. Notice how the r 

changees direction from x to y but looks the same between x and z. 

Equations have been developed for common shapes so that you 

don’t have to integrate every time you want to find the inertia of an 

object. The result is different for each axis, as shown in the following 

figure. 

‘Ixx‘ can be read as ‘the inertia if rotating about the x-axis’. Notice 
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for Ixx and Izz that the height and radius of the cylinder affect the 

inertia, whereas for Iyy, only the radius is considered. 

The equations for each of the objects are listed in a table below. 

First is a second explanation of inertia. 

 

We start by constructing, in our minds, an idealized 

object for which the mass is all concentrated at a single 

location which is not on the axis of rotation: Imagine a 

massless disk rotating about an axis through the center 

of the disk and perpendicular to its faces. 

Let there be a particle of mass m embedded in the disk 

at a distance r from the axis of rotation. Here’s what it 

looks like from a viewpoint on the axis of rotation, some 

distance away from the disk: 

where the axis of rotation is marked with an O. 

Because the disk is massless, we call the moment of 

inertia of the construction, the moment of inertia of a 
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particle, with respect to rotation about an axis from 

which the particle is a distance r. 

I = mr2 

is our equation for the moment of inertia of a particle 

of mass m, with respect to an axis of rotation from 

which the particle is a distance r. 

Now suppose we have two particles embedded in our 

massless disk, one of mass m1 at a distance r1 from the 

axis of rotation and another of mass m2 at a distance r2 

from the axis of rotation. 

The moment of inertia of the first one by itself would 

be 

I1 = m1r1
2 
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and the moment of inertia of the second particle by 

itself would be 

I2 = m2r2
2 

The total moment of inertia of the two particles 

embedded in the massless disk is simply the sum of the 

two individual moments of inertial. 

I = I1 + I2 

I = m1r1
2 + m2r2

2 

This concept can be extended to include any number 

of particles. For each additional particle, one simply 

includes another miri
2 term in the sum where mi is the 

mass of the additional particle and ri is the distance that 

the additional particle is from the axis of rotation. In the 

case of a rigid object, we subdivide the object up into an 

infinite set of infinitesimal mass elements dm. Each 

mass element contributes an amount of moment of 

inertia 

dI = r2dm 

to the moment of inertia of the object, where r is the 

distance that the particular mass element is from the 

axis of rotation. 

 

Source: Calculus-Based Physics 1, Jeffery W. Schnick. 

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 
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7.4.2 Inertia Table of Common Shapes 

Specific inertia equations depending on the shape of the object and 

axis of rotation can be found below. Notice some of the shapes 

have multiple sets of axes: [latex]I_{xx} \text{  and  } 

I_{xx}^\prime[/latex]. There are multiple equations. 
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Symmetric Shapes 

Thin Ring 

$$ I_{xx} = \frac{1}{2}mr^2 \\I_{yy}=mr^2 
\\I_{zz} = \frac{1}{2}mr^2  $$ 

* thickness << 1 

Circular Plate 

$$ I_{xx} = \frac{1}{4}mr^2 
\\I_{yy}=\frac{1}{2}mr^2 \\I_{zz} = 
\frac{1}{4}mr^2  $$ 

 
$$ I_{yy^\prime} = \frac{3}{2}mr^2 $$ 
 
* thickness << 1 

Cylinder 

$$ I_{xx} = \frac{1}{12}m(3r^2+h^2) 
\\I_{yy}=\frac{1}{2}mr^2 \\I_{zz} = 
\frac{1}{12}m(3r^2+h^2) $$ 

$$Volume = \pi r^2 h $$ 

Sphere 

$$I_{xx}=\frac{2}{5}mr^2 
\\I_{yy}=\frac{2}{5}mr^2 
\\I_{zz}=\frac{2}{5}mr^2 $$ 

 
$$Volume = \frac{4}{3}\pi r^3 $$ 
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Slender Rod 

$$ I_{xx} = \frac{1}{12}ml^2 
\\I_{yy}=0\\I_{zz} = \frac{1}{12}ml^2

 
$$ I_{xx^\prime} = \frac{1}{3}ml^2 

\\I_{zz^\prime} = \frac{1}{3}ml^2  $$ 
* radius << length 

Rectangular 
Plate 

$$ I_{xx} = \frac{1}{12}mh^2 
\\I_{yy}=\frac{1}{12}m(h^2+b^2) \\I_{
\frac{1}{12}mb^2  $$ 

* thickness << 1 

Rectangular 
Block 

$$ I_{xx} = \frac{1}{12}m(h^2+d^2) 
\\I_{yy}=\frac{1}{12}m(d^2+w^2) \\I_{
= \frac{1}{12}m(h^2+w^2) $$ 

 
$$ Volume = bwh $$ 

Asymmetric Shapes 
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Half Cylinder 

$$ I_{xx} = \left( \frac{1}{4}-\frac{16}{9 
\pi^2} \right)mr^2 + \frac{1}{12}mh^2 
\\I_{yy}= \left( \frac{1}{2}-\frac{16}{9 
\pi^2} \right) mr^2 \\I_{zz} =\left( 
\frac{1}{4}-\frac{16}{9 \pi^2} \right)mr^2 + 
\frac{1}{12}mh^2 $$ 

 
$$ I_{xx^\prime} = 

\frac{1}{12}m(3r^2+h^2) \\I_{yy^\prime
\frac{1}{2}mr^2)\\I_{zz^\prime} = 
\frac{1}{12}m(3r^2+h^2) $$ 

 
$$Volume = \frac{1}{2} \pi r^2 h $$ 

Hemisphere 

$$I_{xx}=\frac{83}{320}mr^2 
\\I_{yy}=\frac{2}{5}mr^2 
\\I_{zz}=\frac{83}{320}mr^2 $$ 

 
$$I_{xx^\prime}=\frac{2}{5}mr^2 

\\I_{zz^\prime}=\frac{2}{5}mr^2 $$ 
 
$$Volume = \frac{2}{3}\pi r^3 $$ 

Cone 

$$I_{xx}=\frac{3}{80}m(4r^2+h^2) 
\\I_{yy}=\frac{3}{10}mr^2 
\\I_{zz}=\frac{3}{80}m(4r^2+h^2) $$ 

 
$$I_{xx^\prime}=\frac{1}{20}m(3r^2+

2) 
\\I_{zz^\prime}=\frac{1}{20}m(3r^2+
$$ 

 
$$Volume = \frac{1}{3}\pi r^2h $$ 

Hallow Shells 
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Cylindrical 
Shell 

$$ I_{xx} = \frac{1}{6}m(3r^2+h^2) 
\\I_{yy}=mr^2 \\I_{zz} = 
\frac{1}{6}m(3r^2+h^2) $$ 

 
* Thickness << 1 

Spherical 
Shell 

$$I_{xx}=\frac{2}{3}mr^2 
\\I_{yy}=\frac{2}{3}mr^2 
\\I_{zz}=\frac{2}{3}mr^2 $$ 

 
* Thickness << 1 

Hemispherical 
Shell 

$$I_{xx}=\frac{5}{12}mr^2 
\\I_{yy}=\frac{2}{3}mr^2 
\\I_{zz}=\frac{5}{12}mr^2 $$ 

 
$$I_{xx^\prime}=\frac{2}{3}mr^2 

\\I_{zz^\prime}=\frac{2}{3}mr^2 $$ 
 
* Thickness << 1 

Images source: Jacob Moore et al. http://mechanicsmap.psu.edu/websites/centroidtables
centroids3D/centroids3D.html 

 

Notice how different objects with the same mass and radius 

rotate at different rates. This simulation shows a cylinder (blue), 

ring (green), solid sphere (yellow-brown), and spherical shell (red). 

Which one has the least inertia? Why? 
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Source: Lucas Vieira. https://en.wikipedia.org/wiki/
Moment_of_inertia#/media/File:Rolling_Racers_-_Moment_of_inertia.gif 

 

7.4.3 Radius of Gyration 

A concept called the radius of gyration (k) converts a shape into 

a thin ring. This is used for particularly complex shapes. If a 

homework problem says ‘the radius of gyration k = 15 cm’, that 

means if the shape were a thin ring, it would have a radius of 15 cm. 

You calculate the mass moment of inertia using the ring equation: 

[latex]I = mk^2[/latex] 
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Source: 
https://phys.libretexts.org/@go/page/
18431 

 

 

 

[latex]\qquad I = 

mk^2[/latex] 

 

 

 

For example, if the mass of an 

object is m=10 kg, the radius of 

gyration is 5 m, then the inertia is: 

I = mk2 = 10 kg * 5 m * 5 m = 250 kgm2. 

To find the radius of gyration: 

$$ k=\sqrt{\frac{I}{m}}=\sqrt{\frac{250 kgm^2}{10kg}} = 5 m $$ 

 

 

Key Takeaways 

Basically: Mass moment of inertia is an object’s 

resistance to rotation and is impacted by mass and 

distance from the axis of rotation. 

Application: The speed that something rotates, 

such as a satellite spinning in space, is impacted by 

it’s inertia. A bigger inertia has a smaller angular 

acceleration. A smaller inertia allows for a larger 

angular acceleration. 
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Looking Ahead: This will be used throughout 

dynamics. The next section looks at calculating 

inertia of composite objects or from a different axis. 
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7.5 Inertia Intro: Parallel Axis 
Theorem 

There are two great uses for the parallel axis theorem: 

1. Finding the inertia of a complex object with multiple parts. 

Source: Jacob Moore et al. mechanicsmap.psu.edu/
websites/A2_moment_intergrals/
parallel_axis_theorem/parallelaxistheorem.html 

2. Rotating an object about an axis other than through the center of 

mass (y’) 
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Source (image): By Jack Ver, 
https://commons.wikimedia.org/w/
index.php?curid=6613952 

To begin with, the parallel axis theorem is equal to the inertia about 

the center of mass (Icm) plus the distance between the axes of 

rotation squared times the mass. 

$$I=I_{cm}+md^2$$ 

Example 1: 

For a disk, the distance between axes y and y’ is d and the 

[latex]I_{cm} = \frac{1}{2}mr^2[/latex]. 
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Adapted from: Adapted from source: mechanicsmap.psu.edu/websites/
A2_moment_intergrals/parallel_axis_theorem/parallelaxistheorem.html 

$$I=I_{cm}+md^2 = \frac{1}{2}mr^2+mr^2 = \frac{3}{2}mr^2$$ 

 

You will need the table of common geometric shapes in the 

previous section to find the Icm for each object. 

 

• I is the moment of inertia of an object with 

respect to an axis from which the center of 

mass of the object is a distance d. 

• ICM is the moment of inertia of the object with 

respect to an axis that is parallel to the first axis 

and passes through the center of mass. 

• m is the mass of the object. 

• d is the distance between the two axes. 

The parallel axis theorem relates the moment of 

inertia ICM of an object, with respect to an axis through 

the center of mass of the object, to the moment of 

inertia I of the same object, with respect to an axis that 

is parallel to the axis through the center of mass and is 
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at a distance d from the axis through the center of mass. 

A conceptual statement made by the parallel axis 

theorem is one that you probably could have arrived at 

by means of common sense, namely that the moment of 

inertia of an object with respect to an axis through the 

center of mass is smaller than the moment of inertia 

about any axis parallel to that one. As you know, the 

closer the mass is “packed” to the axis of rotation, the 

smaller the moment of inertia; and; for a given object, 

per definition of the center of mass, the mass is packed 

most closely to the axis of rotation when the axis of 

rotation passes through the center of mass. The PAT is 

visually shown below, as z represents the axis on which 

the objects COM rotates about, z’ is the axis it is now 

going to rotate about, and d is the distance between 

these two axis’. 

Source: Calculus-Based Physics 1, Jeffery W. Schnick.  

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 

 

Steps for finding the MMOI of an object 

1. Determine the shape of the object (or shapes, if it a composite 

object). 

2. Determine which axis the object is rotating about. 

3. Find the center of mass for each individual shape. 

4. Find the ICM  (inertia about its center of mass) for each shape. 

5. Determine the distance from the CM of the shapes to the axis 

of rotation. 

6. Use the Parallel Axis Theorem to find the inertia for each 
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shape. 

7. Add up all these individuals inertias to find IT. 

Example 2: 

Find the moment of inertia of a uniform rod with ICM=0.05kgm2, 

L=0.08m, and mass=0.250kg, with respect to an axis that is 

perpendicular to the rod and passes through at 1/4 of the length of the 

rod. 

We know the distance (d) to be L/4 = 0.08m / 4 = 0.02m away 

from the z axis. Here we present the solution to the problem: 

I=ICM + md2 

I=0.05 kgm2 + (0.250kg)(0.02m)2 

I=0.0501 kgm2 

Example 3 

A dumbbell consists of two .2 meter diameter spheres, each with a 
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mass of 40 kg, attached to the ends of a .6 meter long, 20 kg slender 

rod. Determine the mass moment of inertia of the dumbbell about the 

y axis shown in the diagram. 

Source: mechanicsmap.psu.edu/websites/A2_moment_intergrals/
parallel_axis_theorem/parallelaxistheorem.html 

Organize the known and unknown data in a table to complete as you 

go: 

 

Find the center of mass: 

• For each sphere, the rcm is 0.3m + 1/2 radius = 0.3m + 1/2 

(0.2m) = 0.4m 

• For the bar, the rcm is at 0. 
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Find the inertia about the center of mass for each shape separately. 

Use the rectangle equation: 

For the sphere: 

$$ I_{cm-sph}=\frac{2}{5}mr^2 =\frac{2}{5}*(40kg)*(0.1m)^2 \\ 

\qquad \quad =0.16kgm^2$$ 

 

 

For the rod, 

$$I_{cm-rod}=\frac{1}{12}ml^2 = 

\frac{1}{12}*(20kg)*(0.6m)^2\\\qquad \quad = 0.6 kgm^2$$ 
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Next the parallel axis theorum is needed to change the axis of 

rotation from the cm of the sphere to the system cm. The distance 

between axes of rotation is 0.3m + 1/2 radius = 0.3m + 1/2 (0.2m) = 

0.4m 

$$I_{o-sph}=I_{cm-sph}+md^2 = 0.16 kgm^2 + (40kg)*(0.4m)^2 

\\\qquad \quad = 6.56kgm^2$$ 

 

Finally, add up the parts: the 2 spheres and the cm of the rod: 

$$I_{total} = 2 * I_{o-sph}+I_{cm-rod}\\\qquad \quad = 2*(6.56 

kgm^2) + (0.6 kgm^2)\\\qquad \underline{I_{total} = 13.72 

kgm^2}$$ 

 

Source: mechanicsmap.psu.edu/websites/

A2_moment_intergrals/parallel_axis_theorem/

parallelaxistheorem.html 

 

Key Takeaways 

Basically: The parallel axis theorem helps you to find the 

inertia about a different axis of rotation than the cg, and it 

lets you combine multiple objects. 

Application: Find the total inertia of shape with multiple 

objects. 

Looking Ahead: This will be used throughout dynamics. 
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7.6 Examples 

Here are examples from Chapter 7 to help you understand these 

concepts better. These were taken from the real world and supplied 

by FSDE students in Summer 2021. If you’d like to submit your own 

examples, please send them to the author author eosgood@upei.ca. 

 

Example 7.6.1: All of Ch 7 – Submitted by 
William Craine 

1. Problem 

A person is playing soccer. The ball they 

are using has a diameter of 20 cm, and a 

mass of 0.45 kg. The person’s leg has a mass 

of 18 kg, and their foot has a mass of 8 kg. 

Assume that all the shapes are uniform 

density. 

a) Find the cm for the ball. 
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Source: 
https://encrypted-tbn0.gs
tatic.com/
images?q=tbn:ANd9GcTM
4e4xHaRSXBdQMGugm1g
ISi2Qgn7rQx_K3w&usqp
=CAU 

b) Calculate the mass moment of inertia 

(MMOI) for the ball. 

c) Find the cm for the person’s leg and foot. 

d) Find the MMOI for the person’s leg and 

foot on the y-axis about A. 
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2. Draw 
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3. Knowns and Unknowns 

Known: 

• mb = 0.45 kg 

• db = 20 cm 

• mL = 18 kg 
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• mf = 8 kg 

Unknowns: xb, Ib, xp, Ip x 

4. Approach 

Find the cm for both objects using arbitrary 

coordinates since no origin is given. 

Use the sphere MMOI formula for the ball. 

Calculate the individual MMOIs for the leg and foot, 

then use parallel axis theorem to get each shape’s MMOI 

about the system cm, add them, and then use parallel 

axis theorem to get MMOI about A. 

5. Analysis 

Part a (find the center of mass of the ball): 
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$$x_b=(10\underline{\hat{i}}+10\

underline{\hat{ j}}+10\underline{\hat{k}})cm$$ 

 

Part b (find the MMOI of the ball about its center of 

mass): 

$$I_{xx}=I_{yy}=I_{zz}=\frac{2}{3}mr^2\\\qquad 

\quad=\frac{2}{3}(0.45 

kg)(0.1m)^2\\I_b=0.003kgm^2$$ 

 

Part c (find the center of mass for the system of the 

person’s leg): 

Step 1: find the center of mass of the foot ( f) 

$$f=\frac{15cm}{2}\underline{\hat{i}}+\frac{7cm}{2}\

underline{\hat{ j}}+\frac{7cm}{2}\underline{\hat{k}}\\f

=(7.5\underline{\hat{i}}+3.5\underline{\hat{ j}}+3.5\

underline{\hat{k}})cm$$ 

 

Step 2: find the center of mass of the leg (L) 
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$$L_1=(3.5\underline{\hat{i}}+3.5\

underline{\hat{ j}}+15\

underline{\hat{k}})cm\\L_2=(15cm-7cm-1cm)\underlin

e{\hat{i}}+(0cm)\underline{\hat{ j}}+(7cm)\underline{\h
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at{k}}\\\qquad \quad L_2 = (7 

\underline{\hat{i}}+(0)\underline{\hat{ j}}+(7)\underline

{\hat{k}} )cm$$ 

$$\\L=L_1+L_2\\L=(3.5cm+7cm)\underline{\hat{i}}+

(3.5cm+0cm)\underline{\hat{ j}}+(15cm+7cm)\underline{

\hat{k}}\\L=(10.5\underline{\hat{i}}+3.5\

underline{\hat{ j}}+22\underline{\hat{k}})cm$$ 

 

 

Step 3: find the center of mass of the system (P) 

$$x_p=\frac{\sum m_i x_i}{\sum 

m_i}\\X_p=\frac{m_f\cdot x_f+m_L\cdot 

x_L}{m_f+m_L}\\x_p=\frac{8kg\cdot 7.5cm+18kg\

cdot 10.5cm}{8kg+18kg}\\x_p=9.58cm$$ 

 

$$y_p=\frac{\sum m_i y_i}{\sum 

m_i}\\y_p=\frac{8kg\cdot 3.5cm+18kg\cdot 

3.5cm}{8kg+18kg}\\y_p=3.5cm$$ 

$$z_p=\frac{\sum m_i z_i}{\sum 

m_i}\\z_p=\frac{8kg\cdot 3.5cm+18kg\cdot 

22cm}{8kg+18kg}\\z_p=16.3cm$$ 

$$\underline{\underline{P}=(9.58\

underline{\hat{i}}+3.5\underline{\hat{ j}}+16.3\

underline{\hat{k}})cm}$$ 
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Part d (find the inertia of the person’s leg about point 

A): 

Step 1: Find the MMOI of the foot about f (Iff) 

$$x_f=0.15m\\z_f=0.07m\\m_f=8kg$$ 

$$I_{ff}=\frac{1}{12}\cdot m\cdot 

(x^2+z^2)\\I_{ff}=\frac{1}{12}(8kg)(0.15m^2+0.07m^2)

\\I_{ff}=0.0182kg\; m^2$$ 

 

Step 2: Find the MMOI of the foot about P (IPf) 

$$ 

d^2=(0.0208m)^2+(0.128m)^2\\I_{pf}=I_{ff}+m_f(d_f)

^2\\I_{pf}=0.0182kgm^2+8kg[(0.0208m)^2+(0.128m)^

2]\\I_{pf}=0.1527kgm^2$$ 
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Step 3: Find the MMOI of the leg about L (ILL) 

$$r=0.035m\\h=0.3m\\m_L=18kg\\I_{LL}=\frac{1}{

12}\cdot m\cdot 

(3_r^2+h^2)\\I_{LL}=\frac{1}{12}\cdot 

18kg(3(0.035m)^2+(0.3m)^2)\\I_{LL}=0.1405kgm^2$$ 

 

Step 4: Find the MMOI of the leg about P (IPL) 

$$r_{LP}=[(9.58-10.5)\underline{\hat{i}}+(3.5-3.5)\un

derline{\hat{ j}}+(16.3-22)\underline{\hat{k}}]cm\\r_{L

P}=(-0.92\underline{\hat{i}}-5.7\

underline{\hat{k}})cm\\I_{PL}=I_{LL}+m(d^2)\\I_{PL}

=0.1405kgm^2+18kg[(0.0092m)^2+(0.057m)^2]\\I_{PL}

=0.2005kgm^2$$ 

 

Step 5: Find the MMOI of the entire system about P (IP) 

$$I_p=I_{PL}+I_{pf}\\I_p=0.1527kgm^2+0.2005kg\\

I_p=0.3532kgm^2$$ 

 

Step 6: Find the MMOI of the entire system about A (IA) 

$$A=(10.5\underline{\hat{i}}+3.5\

underline{\hat{ j}}+37\underline{\hat{k}})cm\\P=(9.58\

underline{\hat{i}}+3.5\underline{\hat{ j}}+16.3\

underline{\hat{k}})cm\\r_{AP}=P-

A\\r_{AP}=[(9.58-10.5)\underline{\hat{i}}+(3.5-3.5)\und

erline{\hat{ j}}+(16.3-37)\underline{\hat{k}}]cm\\r_{AP}

=(-0.92\underline{\hat{i}}-20.7\

underline{\hat{k}})cm$$ 

$$I_A=I_p+m(d^2)\\I_A=0.3532kgm^2+(8kg+18kg)[(
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0.0092m)^2+(0.207m)^2]\\I_A=1.4695kgm^2\\\unde

rline{I_A=1.47kgm^2}$$ 

6. Review 

It makes sense that the numbers are small, since 

before the final step, the mass was small, or the distance 

to the new axis was small. 

 

Example 7.6.2 Inertia – Submitted by Luke 
McCarvill 

1. Problem 

A figure skater with a mass of 60 kg is 

about to perform a spin about her long axis 

(z). She is 167 cm tall, and her body can be 

approximated as a circular cylinder of 30 cm 

diameter while her limbs are at her side, and 
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a circular cylinder of 60 cm diameter while 

her arms (and one leg) are outstretched. 

a) What should she do in order to generate 

the highest angular acceleration, assuming 

she can generate a net torque of 200 Nm? 

Does lowering her height increase or 

decrease her angular acceleration? 

b) How fast will she be spinning after 0.5 

seconds of her maximum vs minimum 

accelerations, assuming she starts from zero 

(⍵0 = 0 rad/sec)? 
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Annotat
ed from 
original 
source: 
https://
commo
ns.wiki
media.o
rg/
wiki/
File:201
9_Inter
nationa
ux_de_
France
_Friday
_ladies
_SP_gr
oup_1_
Starr_A
NDREW
S_8D9A
6706.jpg 

 

2. Draw 
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3. Knowns and Unknowns 

Knowns: 
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• m = 60 kg 

• ΣM = 200Nm 

• h = 167cm 

• d1 = 30cm 

• d2 = 60cm 

• t = 0.5sec 

• Izz = ½ mr2 

• ΣM = I∝ 

• ⍵0 = 0rad/sec 

Unknowns: 

• ∝1 = ? 

• ∝2 = ? 

• Izz1 = ? 

• Izz2 = ? 

• ⍵1 = ? 

• ⍵2 = ? 

4. Approach 

I’ll be using MMOI for circular cylinders, as well as the 

sum of moments/torque equaling MMOI times angular 

acceleration, as well as acceleration equaling change in 

velocity over time. 

5. Analysis 

Part a: 

Step 1: find the inertia when the arms are hugged to the 

body 

Izz1 = 0.5 (60kg) (0.15m)2 

Izz1= 0.675 kg m2 
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Step 2: find the inertia when the arms are spread out 

Izz2 = 0.5(60kg)(0.3m)2 

Izz2 = 2.7 kg m2 

 

Step 3: find the angular acceleration for both cases 

ΣM = I∝ therefore ΣM/I = ∝ 

 

∝1 = ΣM / Izz1 

∝1 = 200 Nm / 0.675 kg m2 

∝1 ≈ 296.296 rad/sec2 

 

∝2 = ΣM / Izz2 

∝2 = 200Nm/2.7 kg m2 

∝2 ≈ 74.074 rad/sec2 

 

The acceleration when the skater had her arms close 

to her body was about 296 rad/sec2, while that when 

she had her arms spread out was about 74 rad/sec2. 

Therefore, having her limbs closer to her body will give 
her a much higher angular acceleration! 

As seen in the equation Izz = ½ m r2, her height is 
arbitrary, thus lowering her height would not change 
the inertia nor will it change her angular acceleration. 
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Part b: 

∝ = ⍵/t therefore ∝*t = ⍵ 

 

⍵1 = 296.296 s-2(0.5s) 

⍵1 = 148.148 rad/sec 

 

⍵2 = 74.074 s-2(0.5s) 

⍵2 = 37.037 rad/sec 

 

Given that these are in radians per second, let’s 

convert this to rotations per second to make it more 

meaningful. To do so, simply divide by 2pi since there 

are 2pi radians per rotation. Thus, with her arms in, she 

can achieve about 23.6 rotations per second after 0.5 

seconds of acceleration, compared to about 5.9 

rotations per second with her limbs out. This is on par 

with an Olympian according to this site. 

6. Review 

It makes sense that they spin faster when their limbs 

are hugged to their body; we can try this at home with a 

swivel chair! 
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Introduction_to_Engineering/

EGR_1010%3A_Introduction_to_Engineering_for_Engineers_an

d_Scientists/14%3A_Fundamentals_of_Engineering/

14.11%3A_Mechanics/14.11.01%3A_Statics 

Mechanics Map Digital Textbook:  Jacob Moore, et al.

http://www.oercommons.org/courses/mechanics-map-open-

mechanics-textbook/view. Creative Commons Attribution. 

Structural Analysis: https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/

1.04%3A_Internal_Forces_in_Beams_and_Frames 

Internal Forces in Beams and Frames, Libretexts. 

https://eng.libretexts.org/Bookshelves/Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/

1.04%3A_Internal_Forces_in_Beams_and_Frames Creative 

Commons. 

 

Physics Textbooks: 

University Physics Volume 1:            

https://courses.lumenlearning.com/suny-osuniversityphysics/ 

Introductory Physics : Building Models to Describe Our World 

(pdf download): https://openlibrary.ecampusontario.ca/catalogue/

item/?id=4c3c2c75-0029-4c9e-967f-41f178bebbbb 

Information at the foundation of modern science and technology 

from the Physical Measurement Laboratory of NIST: 

https://www.physics.nist.gov/cuu/Units/index.html 

“UCD: Physics 9A – Classical Mechanics” by Tom Weideman, 

LibreTexts is licensed under CC BY-SA. 

Source: https://phys.libretexts.org/Courses/
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Calculus Volume 1: https://openstax.org/books/calculus-

volume-1/pages/1-3-trigonometric-functions 

Calculus Based Physics, Jeffrey W. Schnick, 
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