
Yet Another

Introductory Number Theory Textbook

(Cryptology Emphasis Version)

Jonathan A. Poritz

after Wissam Raji

Department of Mathematics and Physics

Colorado State University, Pueblo

2200 Bonforte Blvd.

Pueblo, CO 81001, USA

E-mail: jonathan.poritz@gmail.com

Web: www.poritz.net/jonathan

07 MAY 2014 11:04MDT

Preface

This is a first draft of a free (as in speech, not as in beer, [Sta02]) (although it is free as in

beer as well) undergraduate number theory textbook. It was used for Math 319 at Colorado

State University –Pueblo in the spring semester of 2014. Thanks are hereby offered to the

students in that class – Megan Bissell, Tennille Candelaria, Ariana Carlyle, Michael De-

graw, Daniel Fisher, Aaron Griffin, Lindsay Harder, Graham Harper, Helen Huang, Daniel

Nichols, and Arika Waldrep – who offered many useful suggestions and found numerous

typos. I am also grateful to the students in my Math 242 Introduction to Mathematical Pro-

gramming class in that same spring semester of 2014 – Stephen Ciruli, Jamen Cox, Graham

Harper, Joel Kienitz, Matthew Klamm, Christopher Martin, Corey Sullinger, James Todd,

and Shelby Whalen – whose various programming projects produced code that I adapted

to make some of the figures and examples in the text.

The author gratefully acknowledges the work An Introductory Course in Elementary

Number Theory by Wissam Raji [see www.saylor.org/books/] from which this

was initially adapted. Raji’s text was released under the Creative Commons CC BY 3.0

license, see creativecommons.org/licenses/by/3.0 .

This work is instead released under a CC BY-SA 4.0 license, see

creativecommons.org/licenses/by-sa/4.0 . (The

difference is that if you build future works off of this one, you must also release your

derivative works with a license that allows further remixes over which you have no control.)

This version: 07 May 2014 11:04MDT. Note this text will be frequently updated and

improved as the author has time, particularly during and immediately after semesters in

which it is being used in a class. Therefore please check back often to the website, which

is www.poritz.net/jonathan/share/yaintt.

This work is dedicated to my insanely hardworking colleagues at Colorado State Uni-

versity – Pueblo whose dedication to their students, their scholarship, and their communi-

ties is an inspiration. While I was working on the first version of this book, those colleagues

stood up to some of the most benighted, ignorant administrative nonsense I have seen in

the more than thirty years I have been involved in higher education. As MLK said, “The

arc of the moral universe is long, but it bends towards justice.” – It is selfless, intelligent,

hard work like yours that is doing the bending.

Jonathan A. Poritz, 7 May 2014, Pueblo, CO, USA

iii

Release Notes

This version of YAINTT has a particular emphasis on connections to cryptology. The

cryptologic material appears in Chapter 4 and §§ 5.5 and 5.6, arising naturally (I hope)

out of the ambient number theory. The main cryptologic applications – being the RSA

cryptosystem, Diffie-Hellman key exchange, and the ElGamal cryptosystem – come out

so naturally from considerations of Euler’s Theorem, primitive roots, and indices that it

renders quite ironic G.H. Hardy’s assertion [Har05] of the purity and eternal inapplicability

of number theory.

Note, however, that once we broach the subject of these cryptologic algorithms, we

take the time to make careful definitions for many cryptological concepts and to develop

some related ideas of cryptology which have much more tenuous connections to the topic

of number theory. This material therefore has something of a different flavor from the

rest of the text – as is true of all scholarly work in cryptology (indeed, perhaps in all of

computer science), which is clearly a discipline with a different culture from that of “pure”

mathematics. Obviously, these sections could be skipped by an uninterested reader, or

remixed away by an instructor for her own particular class approach.

Caution: In good Bourbaki1 style, where this symbol appears in the text below,

it indicates a place where the reasoning is intricate and difficult to follow, or calls

attention to a common misinterpretation of some point.

This version, in PDF form, can be found at

http://www.poritz.net/jonathan/share/yaintt.pdf

while all the files to create custom versions can be found at

http://www.poritz.net/jonathan/share/yaintt/

– have fun with it, that’s the point of the Creative Commons!

1A fictional mathematician and author of many (non-fictional – they really exist) fine mathematics texts,

such as [Bou04]

v

Contents

Preface iii

Release Notes v

Chapter 1. Well-Ordering and Division 1

1.1. The Well-Ordering Principle and Mathematical Induction 1

1.2. Algebraic Operations with Integers 5

1.3. Divisibility and the Division Algorithm 6

1.4. Representations of Integers in Different Bases 9

1.5. The Greatest Common Divisor 13

1.6. The Euclidean Algorithm 17

Chapter 2. Congruences 21

2.1. Introduction to Congruences 21

2.2. Linear Congruences 27

2.3. The Chinese Remainder Theorem 30

2.4. Another Way to Work with Congruences: Equivalence Classes 33

2.5. Euler’s φ Function 37

Chapter 3. Prime Numbers 41

3.1. Basics and the FTA 41

3.2. Wilson’s Theorem 45

3.3. Multiplicative Order and Applications 47

3.4. Another Approach to Fermat’s Little and Euler’s Theorems 51

Chapter 4. Cryptology 55

4.1. Some Speculative History 55

4.2. The Caesar Cipher and Its Variants 60

4.3. First Steps into Cryptanalysis: Frequency Analysis 64

4.4. Public-Key Crypto: the RSA Cryptosystem 73

4.5. Digital Signatures 81

4.6. Man-in-the-Middle Attacks, Certificates, and Trust 86

Chapter 5. Indices = Discrete Logarithms 89

5.1. More Properties of Multiplicative Order 91

vii

viii CONTENTS

5.2. A Necessary Digression: Gauss’s Theorem on Sums of Euler’s Function 94

5.3. Primitive Roots 97

5.4. Indices 103

5.5. Diffie-Hellman Key Exchange 107

5.6. The ElGamal Cryptosystem 111

Bibliography 115

Index 117

CHAPTER 1

Well-Ordering and Division

1.1. The Well-Ordering Principle and Mathematical Induction

In this chapter, we present three basic tools that will often be used in proving properties

of the integers. We start with a very important property of integers called the well-ordering

principle. We then state what is known as the pigeonhole principle, and then we proceed to

present an important method called mathematical induction.

1.1.1. The Well-Ordering Principle.

DEFINITION 1.1.1. Given a set S of numbers (of any kind), we say that ℓ ∈ S is a least

element of S if ∀x ∈ S, either x = ℓ or ℓ < x.

THE WELL-ORDERING PRINCIPLE. Every non-empty set of natural numbers has a

least element.

This principle is often taken as an axiom.

1.1.2. The Pigeonhole Principle.

THEOREM 1.1.2. The Pigeonhole Principle: Let s, k ∈ N satisfy s > k. If s objects

are placed in k boxes, then at least one box contains more than one object.

PROOF. Suppose that none of the boxes contains more than one object. Then there are

at most k objects. This leads to a contradiction with the fact that there are s objects for

s > k. �

1.1.3. The Principle of Mathematical Induction. We now present a valuable tool for

proving results about integers. This tool is the principle of mathematical induction.

THEOREM 1.1.3. The First Principle of Mathematical Induction: Let S ⊂ N be a set

satisfying the following two properties:

(1) 1 ∈ S; and

(2) ∀k ∈ N, k ∈ S ⇒ k + 1 ∈ S.

Then S = N.

More generally, if P(n) is a property of natural numbers which may or may not be true for

any particular n ∈ N, satisfying

(1) P(1) is true; and

1

2 1. WELL-ORDERING AND DIVISION

(2) ∀k ∈ N, P(k)⇒ P(k + 1)

then ∀n ∈ N,P(n) is true.

PROOF. We use the well-ordering principle to prove this first principle of mathematical

induction.

Let S be the set from the first part of the theorem and let T be the set of natural numbers

not in S. We will use a proof by contradiction, so assume T is non-empty.

Then, by the well-ordering principle, T contains a least element ℓ.

Note that 1 ∈ S, so 1 /∈ T and thus ℓ > 1. Therefore ℓ− 1 is a natural number. Since ℓ

is the least element of T , ℓ− 1 is not in T , it is therefore in S.

But by the defining properties of S, since ℓ − 1 ∈ S, ℓ = ℓ − 1 + 1 ∈ S, which

contradicts the fact that ℓ is a least element of T , so in T , so not in S.

This contradiction implies that the assumption that T is non-empty is false, hence S =

N.

For the second part of the theorem, let S = {n ∈ N | P(n) is true} and apply the first

part. �

EXAMPLE 1.1.4. We use mathematical induction to show that ∀n ∈ N

(1.1.1)

n∑

j=1

j =
n(n + 1)

2
.

First note that
1∑

j=1

j = 1 =
1 · 2
2

and thus the the statement is true for n = 1. For the remaining inductive step, suppose that

the formula holds for some particular n ∈ N, that is
∑n

j=1 j =
n(n+1)

2
. We show that

n+1∑

j=1

j =
(n + 1)(n+ 2)

2
.

to complete the proof by induction. Indeed

n+1∑

j=1

j =
n∑

j=1

j + (n+ 1) =
n(n+ 1)

2
+ (n + 1) =

(n + 1)(n+ 2)

2
,

and the result follows.

EXAMPLE 1.1.5. Now we use mathematical induction to prove that n! ≤ nn ∀n ∈ N.

Note that 1! = 1 ≤ 11 = 1. We now present the inductive step. Suppose that

n! ≤ nn

for some n ∈ N, we prove that (n + 1)! ≤ (n+ 1)n+1. Note that

(n+ 1)! = (n+ 1)n! ≤ (n + 1).nn < (n+ 1)(n+ 1)n = (n+ 1)n+1.

1.1. THE WELL-ORDERING PRINCIPLE AND MATHEMATICAL INDUCTION 3

This completes the proof.

THEOREM 1.1.6. The Second Principle of Mathematical Induction: Let S ⊂ N be a

set satisfying the following two properties:

(1) 1 ∈ S; and

(2) ∀k ∈ N, 1, . . . , k ∈ S ⇒ k + 1 ∈ S.

Then S = N.

More generally, if P(n) is a property of natural numbers which may or may not be true for

any particular n ∈ N, satisfying

(1) P(1) is true; and

(2) ∀k ∈ N, if P(1), . . . ,P(k) are all true, then P(k + 1) is also true

then ∀n ∈ N,P(n) is true.

PROOF. To prove the second principle of induction, we use the first principle of induc-

tion.

Let S be a set of integers as in the first part of the theorem. For n ∈ N, let P(n)
be the mathematical property “1, . . . , n ∈ S”. Then we can apply the First Principle of

Mathematical Induction to prove that ∀n ∈ N P(n) is true, which means S = N. [Details

left to the reader.]

The second part of the theorem follows from the first in exactly the same way that the

second part of the First Principle of Mathematical Induction followed from the first. �

4 1. WELL-ORDERING AND DIVISION

Exercises for §1.1.

EXERCISE 1.1.1. Prove using mathematical induction that n < 3n for all positive inte-

gers n.

EXERCISE 1.1.2. Show that
∑n

j=1 j
2 = n(n+1)(2n+1)

6
.

EXERCISE 1.1.3. Use mathematical induction to prove that
∑n

j=1(−1)j−1j2 = (−1)n−1n(n+

1)/2.

EXERCISE 1.1.4. Use mathematical induction to prove that
∑n

j=1 j
3 = [n(n + 1)/2]2

for every positive integer n.

EXERCISE 1.1.5. Use mathematical induction to prove that
∑n

j=1(2j − 1) = n2.

EXERCISE 1.1.6. Use mathematical induction to prove that 2n < n! for n ≥ 4.

EXERCISE 1.1.7. Use mathematical induction to prove that n2 < n! for n ≥ 4.

1.2. ALGEBRAIC OPERATIONS WITH INTEGERS 5

1.2. Algebraic Operations with Integers

On Z, the set of integers, there are two basic binary operations, namely addition (de-

noted by +) and multiplication (denoted by ·), which satisfy the following well known

properties:

(1) Commutativity of addition and multiplication

∀a, b ∈ Z : a+ b = b+ a

a · b = b · a
(2) Associativity of addition and multiplication

∀a, b, c ∈ Z : (a + b) + c = a + (b+ c)

(a · b) · c = a · (b · c)
(3) Distributivity of multiplication over addition

∀a, b, c ∈ Z : a · (b+ c) = a · b+ a · c.
In the set Z there are identity elements for the two operations + and ·, and these are the

elements 0 and 1 respectively, that satisfy the basic properties

∀a ∈ Z : a+ 0 = 0 + a = a

a · 1 = 1 · a = a .

The set Z allows additive inverses for its elements, in the sense that for every a ∈ Z

there exists another integer in Z, denoted by −a, such that

(1.2.1) a + (−a) = 0.

While for multiplication, only the integer 1 has a multiplicative inverse in the sense that

1 is the only integer a such that there exists another integer, denoted by a−1 or by 1/a,

(namely 1 itself in this case) such that

(1.2.2) a · a−1 = 1.

From the operations of addition and multiplication one can define two other operations

on Z, namely subtraction (denoted by −) and division (denoted by /). Subtraction is a

binary operation on Z, i.e., defined for any two integers in Z, while division is not a binary

operation and thus is defined only for some specific pairs of integers in Z. Subtraction and

division are defined as follows:

(1) ∀a, b ∈ Z, a− b is defined to be a+ (−b)
(2) Given a, b ∈ Z, where b 6= 0, if ∃c ∈ Z such that a = b · c then a/b is defined to

be c.

6 1. WELL-ORDERING AND DIVISION

1.3. Divisibility and the Division Algorithm

We now discuss the concept of divisibility and its properties.

1.3.1. Integer Divisibility.

DEFINITION 1.3.1. If a and b are integers such that a 6= 0, then we say a divides b and

write a | b if there exists an integer k such that b = ka. That is, given a, b ∈ Z such that

a 6= 0, we write a | b if ∃k ∈ Z. s.t. b = ka.

If a divides b, we also say a is a factor [or divisor] of b, and b is a multiple of a. If a

does not divide b, we write a ∤ b.

EXAMPLE 1.3.2. For example, 2 | 4 and 7 | 63, while 5 ∤ 26.

DEFINITION 1.3.3. Given a ∈ Z, we say a is even if 2 | a, i.e., if ∃k ∈ Z s.t. a = 2k.

In contrast, given a ∈ Z, we say a is odd if 2 ∤ a.

It is a consequence of the Division Algorithm, below, that if a is odd then ∃k ∈ Z s.t.

a = 2k + 1.

PROPOSITION 1.3.4. ∀a ∈ Z we have a | 0.

PROPOSITION 1.3.5. If b ∈ Z is such that |b| < a, and b 6= 0, then a ∤ b.

PROPOSITION 1.3.6. Given a, b ∈ Z, a | b⇔ a | |b|.
THEOREM 1.3.7. If a, b and c are integers such that a | b and b | c, then a | c.
PROOF. Since a | b and b | c, we know ∃k1, k2 ∈ Z such that b = k1a and c = k2b.

Hence c = k1k2a and so a | c. �

EXAMPLE 1.3.8. Since 6 | 18 and 18 | 36, then 6 | 36.

The following theorem states that if an integer divides two other integers then it divides

any linear combination of these integers.

THEOREM 1.3.9. ∀a, b, c,m, n ∈ Z, if c | a and c | b then c | (ma+ nb).

PROOF. Since c | a and c | b, ∃k1, k2 ∈ Z such that a = k1c and b = k2c. Thus

ma + nb = mk1c+ nk2c = c(mk1 + nk2),

and hence c | (ma + nb). �

Theorem 1.3.9 can be generalized to any finite linear combination as follows. If

n ∈ N, a, b1, . . . , bn ∈ Z and a | b1, a | b2, . . . , a | bn
then

(1.3.1) a |
n∑

j=1

kjbj

∀k1, . . . , kn ∈ Z. It would be a nice exercise to prove this generalization by induction.

1.3. DIVISIBILITY AND THE DIVISION ALGORITHM 7

1.3.2. The Division Algorithm.

THEOREM 1.3.10. The Division Algorithm Given a, b ∈ Z such that b > 0, there exist

unique q, r ∈ Z such that a = qb + r and 0 ≤ r < b. This q is called the quotient and r

the remainder when a is divided by b.

PROOF. Consider the set A = {a − bk ≥ 0 | k ∈ Z}. Note that A is nonempty since

for k < a/b, a− bk > 0. By the well-ordering principle, A has a least element r = a− qb
for some q ∈ Z. Notice that r ≥ 0 by construction. Now if r ≥ b then (since b > 0)

r > r − b = a− qb− b = a− (q + 1)b ≥ 0.

This leads to a contradiction since r is assumed to be the least positive integer of the form

r = a− qb. As a result we have 0 ≤ r < b.

We will show that q and r are unique. Suppose that a = q1b+ r1 and a = q2b+ r2 with

0 ≤ r1 < b and 0 ≤ r2 < b. Then we have

a− a = q1b+ r1 − (q2b+ r2) = (q1 − q2)b+ (r1 − r2) = 0.

As a result we have

(q1 − q2)b = r2 − r1.
Thus we get that

b | (r2 − r1).
And since −max(r1, r2) ≤ |r2 − r1| ≤ max(r1, r2), and b > max(r1, r2), then r2 − r1
must be 0, i.e. r2 = r1. And since bq1 + r1 = bq2 + r2, we also get that q1 = q2. This

proves uniqueness. �

EXAMPLE 1.3.11. If a = 71 and b = 6, then 71 = 6 · 11 + 5. Here q = 11 and r = 5.

8 1. WELL-ORDERING AND DIVISION

Exercises for §1.3.

EXERCISE 1.3.1. Show that 5 | 25, 19 | 38 and 2 | 98.

EXERCISE 1.3.2. Use the division algorithm to find the quotient and the remainder

when 76 is divided by 13.

EXERCISE 1.3.3. Use the division algorithm to find the quotient and the remainder

when -100 is divided by 13.

EXERCISE 1.3.4. Show that if a, b, c and d are integers with a and c nonzero, such that

a | b and c | d, then ac | bd.

EXERCISE 1.3.5. Show that if a and b are positive integers and a | b, then a ≤ b.

EXERCISE 1.3.6. Prove that the sum of two even integers is even, the sum of two odd

integers is even and the sum of an even integer and an odd integer is odd.

EXERCISE 1.3.7. Show that the product of two even integers is even, the product of

two odd integers is odd and the product of an even integer and an odd integer is even.

EXERCISE 1.3.8. Show that if m is an integer then 3 divides m3 −m.

EXERCISE 1.3.9. Show that the square of every odd integer is of the form 8m+ 1.

EXERCISE 1.3.10. Show that the square of any integer is of the form 3m or 3m+1 but

not of the form 3m+ 2.

EXERCISE 1.3.11. Show that if ac | bc, then a | b.

EXERCISE 1.3.12. Show that if a | b and b | a then a = ±b.

1.4. REPRESENTATIONS OF INTEGERS IN DIFFERENT BASES 9

1.4. Representations of Integers in Different Bases

In this section, we show how any positive integer can be written in terms of any positive

base integer expansion in a unique way. Normally we use decimal notation to represent

integers, we will show how to convert an integer from decimal notation into any other

positive base integer notation and vise versa. Using the decimal notation in daily life is

more traditional probably only because we have ten fingers. (“What about our toes?” you

cry. I don’t know. And apparently the Babylonians had 30 fingers on each hand, or 15 on

each hand and each foot, since they used base 60.)

Notation An integer a written in base b expansion is denoted by (a)b.

THEOREM 1.4.1. Let b ∈ Z satisfy b > 1. Then ∀m ∈ N, ∃l ∈ N and ∃a1, . . . , al ∈ Z

such that

m = alb
l + al−1b

l−1 + · · ·+ a1b+ a0,

0 ≤ aj < b for j = 0, 1, . . . , l, and

al 6= 0.

PROOF. Fix an m ∈ N. We start by dividing m by b and we get

m = q0b+ a0, 0 ≤ a0 < b.

If q0 6= 0 then we continue to divide q0 by b and we get

q0 = q1b+ a1, 0 ≤ a1 < b.

We continue this process and hence we get

q1 = q2b+ a2, 0 ≤ a2 < b,

.

.

.

ql−2 = ql−1b+ al−1, 0 ≤ al−1 < b,

ql−1 = 0 · b+ al, 0 ≤ al < b.

Note that the sequence q0, q1, . . . is a decreasing sequence of non-negative integers with a

last term ql that must be 0.

Now substituting the equation q0 = q1b+ a1 in m = q0b+ a0, we get

m = (q1b+ a1)b+ a0 = q1b
2 + a1b+ a0,

10 1. WELL-ORDERING AND DIVISION

Successively substituting the equations in m, we get

m = q2b
3 + a2b

2 + a1b+ a0,

.

.

.

= ql−1b
l + al−1b

l−1 + · · ·+ a1b+ a0,

= alb
l + al−1b

l−1 + · · ·+ a1b+ a0.

What remains to prove is that the representation is unique. Suppose now that

m = alb
l + al−1b

l−1 + · · ·+ a1b+ a0 = clb
l + cl−1b

l−1 + · · ·+ c1b+ c0

where if the number of terms is different in one expansion, we add zero coefficients to make

the number of terms agree. Subtracting the two expansions, we get

(al − cl)bl + (al−1 − cl−1)b
l−1 + · · ·+ (a1 − c1)b+ (a0 − c0) = 0.

If the two expansions are different, then there exists 0 ≤ j ≤ l such that cj 6= aj . As a

result, we get

bj((al − cl)bl−j + · · ·+ (aj+1 − cj+1)b+ (aj − cj)) = 0

and since b 6= 0, we get

(al − cl)bl−j + · · ·+ (aj+1 − cj+1)b+ (aj − cj) = 0.

We now get

aj − cj = (al − cl)bl−j + · · ·+ (aj+1 − cj+1)b,

and as a result, b | (aj − cj). Since 0 ≤ aj < b and 0 ≤ cj < b, we get that aj = cj . This is

a contradiction and hence the expansion is unique. �

DEFINITION 1.4.2. Given b ∈ Z satisfying b > 1. For m ∈ N, let ℓ ∈ N and

a1, . . . , aℓ ∈ Z be as in the above theorem (1.4.1). Then the base b expression for m

is the sequences of digits mb = aℓ . . . a1. If b ≥ 10, we often use some other single

symbols to represent the possible values from 10 to b− 1 of the ai’s. For example,

10 ! A

11 ! B

12 ! C

etc.

Base 2 representation of integers is called binary representation. Binary representation

is useful for computers: the coefficients a0, . . . , al of a binary representation all satisfy

0 ≤ aj < 2, hence they are 0 or 1. Thus to represent an integer on l wires, one can have

1.4. REPRESENTATIONS OF INTEGERS IN DIFFERENT BASES 11

each wire either have voltage (1) or not (0). (In fact, the word bit is a contraction of binary

digit.)

Computer programmers also frequently use base 8 and base 16, called octal and hexa-

decimal or hex, respectively. The Babylonians used base 60, called sexagesimal.

EXAMPLE 1.4.3. To find the expansion of 214 base 3: we do the following

214 = 3 · 71 + 1

71 = 3 · 23 + 2

23 = 3 · 7 + 2

7 = 3 · 2 + 1

2 = 3 · 0 + 2

As a result, to obtain a base 3 expansion of 214, we take the remainders of divisions and

we get that (214)10 = (21221)3.

EXAMPLE 1.4.4. To find the base 10 expansion, i.e., the decimal expansion, of (364)7:

We do the following: 4 · 70 + 6 · 71 + 3 · 72 = 4 + 42 + 147 = 193.

12 1. WELL-ORDERING AND DIVISION

1.4.1. Exercises for §1.4.

EXERCISE 1.4.1. Convert (7482)10 to base 6 notation.

EXERCISE 1.4.2. Convert (98156)10 to base 8 notation.

EXERCISE 1.4.3. Convert (101011101)2 to decimal notation.

EXERCISE 1.4.4. Convert (AB6C7D)16 to decimal notation.

EXERCISE 1.4.5. Convert (9A0B)16 to binary notation.

1.5. THE GREATEST COMMON DIVISOR 13

1.5. The Greatest Common Divisor

In this section we define the greatest common divisor (gcd) of two integers and discuss

its properties. We also prove that the greatest common divisor of two integers is a linear

combination of these integers.

Two integers a and b, not both 0, can have only finitely many divisors (see Exer-

cise 1.3.5), and thus can have only finitely many divisors in common. In this section,

we are interested in the greatest of these common divisors.

DEFINITION 1.5.1. Given a, b ∈ Z, not both zero, the greatest common divisor is the

largest integer that divides both a and b, and is written gcd(a, b) (or sometimes just (a, b)).

When it makes some formulæ simpler, we will write gcd(0, 0) = 0.

EXAMPLE 1.5.2. The greatest common divisor of 24 and 18 is 6. In other words

gcd(24, 18) = 6.

DEFINITION 1.5.3. a, b ∈ Z are said to be relatively prime if gcd(a, b) = 1.

EXAMPLE 1.5.4. The greatest common divisor of 9 and 16 is 1, thus they are relatively

prime.

Note that every integer has positive and negative divisors. If a is a positive divisor ofm,

then −a is also a divisor of m. Therefore by our definition of the greatest common divisor,

we can see that gcd(a, b) = gcd(|a|, |b|).
We can use the gcd of two integers to make relatively prime integers:

THEOREM 1.5.5. If a, b ∈ Z have gcd(a, b) = d then gcd(a/d, b/d) = 1.

PROOF. Fix a, b ∈ Z. We will show that a/d and b/d have no common positive divisors

other than 1. Let k ∈ N be a divisor of both a/d and b/d, so ∃m,n ∈ N such that

a/d = km and b/d = kn

Thus we get that

a = kmd and b = knd.

Hence kd is a common divisor of both a and b. Also, kd ≥ d. However, d is the greatest

common divisor of a and b. As a result, we get that k = 1. �

The next theorem shows that the greatest common divisor of two integers does not

change when we add a multiple of one of the two integers to the other.

THEOREM 1.5.6. Let a, b, c ∈ Z. Then gcd(a, b) = gcd(a + cb, b).

PROOF. We will show that every divisor of a and b is also a divisor of a+ cb and b and

vise versa. Hence they have exactly the same divisors. So we get that the greatest common

divisor of a and b will also be the greatest common divisor of a + cb and b. Let k be a

14 1. WELL-ORDERING AND DIVISION

common divisor of a and b. By Theorem 1.3.9, k | (a + cb) and hence k is a divisor of

a+ cb. Now assume that l is a common divisor of a+ cb and b. Also by Theorem 1.3.9 we

have,

l | ((a + cb)− cb) = a.

As a result, l is a common divisor of a and b and the result follows. �

EXAMPLE 1.5.7. Notice that gcd(4, 14) = gcd(4, 14− 3 · 4) = gcd(4, 2) = 2.

We now present a theorem which proves that the greatest common divisor of two inte-

gers can be written as a linear combination of the two integers.

THEOREM 1.5.8. Let a, b ∈ Z not both be zero. Then gcd(a, b) is the smallest natural

number which is of the form d = ma + nb for some m,n ∈ Z.

PROOF. Assume without loss of generality that a, b ∈ N are positive integers. Consider

the set

S = {d ∈ N | d = ma+ nb for some m,n ∈ Z} .
S is non-empty since a = 1 · a+ 0 · b and b = 0 · a + 1 · b are both in S. Let d ∈ N be the

least element of S, whose existence is guaranteed by the well-ordering principle. Notice

d = ma + nb for some m,n ∈ Z, since d ∈ S. We still must prove that d divides both a

and b and that it is the greatest such common divisor.

By the division algorithm, ∃q, r ∈ Z such that

a = qd+ r, 0 ≤ r < d.

Thus we have

r = a− qd = a− q(ma+ nb) = (1− qm)a− qnb.
We then have that r is a linear combination of a and b. Since 0 ≤ r < d and d is the

least positive integer which is a linear combination of a and b, we must have r = 0 and so

a = qd. Hence d | a.

The same sort of argument will show that d | b.
Now notice that if there is a divisor c that divides both a and b. Then c divides any

linear combination of a and b by Theorem 1.3.9. Hence c | d. This proves that any common

divisor of a and b divides d. Hence c ≤ d, and d is the greatest common divisor. �

There is a simple application of this which will be very useful in the future:

COROLLARY 1.5.9. If a, b ∈ Z are relatively prime, then ∃m,n ∈ Z such that ma +

nb = 1.

DEFINITION 1.5.10. For some n ∈ N, let a1, a2, . . . , an ∈ Z not be all 0. The greatest

common divisor of these integers is the largest integer that divides all of them, and is

denoted gcd(a1, . . . , an).

1.5. THE GREATEST COMMON DIVISOR 15

DEFINITION 1.5.11. For some n ∈ N, a1, a2, . . . , an ∈ Z are said to be mutually

relatively prime if gcd(a1, a2, . . . , an) = 1.

EXAMPLE 1.5.12. The integers 3, 6, 7 are mutually relatively prime since (3, 6, 7) = 1

although (3, 6) = 3.

DEFINITION 1.5.13. For some n ∈ N, a1, a2, . . . , an ∈ Z are called pairwise relatively

prime if ∀i, j ∈ N such that i ≤ n, j ≤ n, and i 6= j, we have gcd(ai, aj) = 1.

EXAMPLE 1.5.14. The integers 3, 14, 25 are pairwise relatively prime. Notice also that

these integers are mutually relatively prime.

PROPOSITION 1.5.15. For n ∈ N and a1, . . . , an ∈ Z, if a1, a2, . . . , an are pairwise

relatively prime then they are mutually relatively prime.

16 1. WELL-ORDERING AND DIVISION

Exercises for §1.5.

EXERCISE 1.5.1. Find the greatest common divisor of 15 and 35.

EXERCISE 1.5.2. Find the greatest common divisor of 100 and 104.

EXERCISE 1.5.3. Find the greatest common divisor of -30 and 95.

EXERCISE 1.5.4. Let m ∈ N. Find the greatest common divisor of m and m+ 1.

EXERCISE 1.5.5. Let m ∈ N, find the greatest common divisor of m and m+ 2.

EXERCISE 1.5.6. Show that ifm,n ∈ Z have gcd(m,n) = 1, then gcd(m+n,m−n) =
1 or 2.

EXERCISE 1.5.7. Show that if m ∈ N, then 3m+ 2 and 5m+ 3 are relatively prime.

EXERCISE 1.5.8. Show that if a, b ∈ Z are relatively prime, then gcd(a+2b, 2a+b) = 1

or 3.

EXERCISE 1.5.9. Show that if a1, a2, . . . , an ∈ Z are not all 0 and c ∈ N, then

gcd(ca1, ca2, . . . , can) = c · gcd(a1, a2, . . . , an).

1.6. THE EUCLIDEAN ALGORITHM 17

1.6. The Euclidean Algorithm

In this section we describe a systematic method that determines the greatest common

divisor of two integers, due to Euclid and thus called the Euclidean algorithm.

LEMMA 1.6.1. If a, b, q, r ∈ Z and a = qb+ r, then gcd(a, b) = gcd(r, b).

PROOF. Note that by theorem 8, we have gcd(bq + r, b) = gcd(b, r). �

Now to the Euclidean algorithm in its general form, which basically states that the

greatest common divisor of two integers is the last non zero remainder of successive divi-

sions.

THEOREM 1.6.2. Let a, b ∈ N and assume a ≥ b. Define r0 = a, r1 = b, s0 = 1,

s1 = 0, t0 = 0, and t1 = 1. Then apply the division algorithm successively to obtain

quotients and remainders qj , rj ∈ N satisfying rj = rj+1qj+1 + rj+2 and 0 ≤ rj+2 < rj+1

for all j = 0, 1, . . . , n− 2 where n is defined so that rn+1 = 0. Along the way, also define

sj+1 = sj−1 − qj+1sj and tj+1 = tj−1 − qj+1tj . Then gcd(a, b) = rn = sn+1a + tn+1b.

PROOF. By applying the division algorithm, we see that

r0 = q1r1 + r2 0 ≤ r2 < r1,

r1 = q2r2 + r3 0 ≤ r3 < r2,

.

.

.

rn−2 = qn−1rn−1 + rn 0 ≤ rn < rn−1,

rn−1 = qnrn.

Notice that, we will have a remainder of 0 eventually since all the remainders are integers

and every remainder in the next step is less than the remainder in the previous one. By

Lemma 1.6.1, we see that

gcd(a, b) = gcd(b, r2) = gcd(r2, r3) = · · · = gcd(rn, 0) = rn.

�

Note: The full version of this theorem, with the sj’s and tj , is called the extended Eu-

clidean Algorithm, while a simpler version without those coefficients is know as Eu-

clidean Algorithm.

The attentive reader will have seen that We did not actually prove that the sj’s and tj’s

can be used, as claimed, to write the gcd as a linear combination of a and b. This proof is

left as an exercise, below.

18 1. WELL-ORDERING AND DIVISION

EXAMPLE 1.6.3. We will find the greatest common divisor of 4147 and 10672:

Note that

10672 = 4147 · 2 + 2378,

4147 = 2378 · 1 + 1769,

2378 = 1769 · 1 + 609,

1769 = 609 · 2 + 551,

609 = 551 · 1 + 58,

551 = 58 · 9 + 29,

58 = 29 · 2,

Hence gcd(4147, 10672) = 29.

1.6. THE EUCLIDEAN ALGORITHM 19

Exercises for §1.6.

EXERCISE 1.6.1. Use the Euclidean algorithm to find the greatest common divisor of

412 and 32 and express it in terms of the two integers.

EXERCISE 1.6.2. Use the Euclidean algorithm to find the greatest common divisor of

780 and 150 and express it in terms of the two integers.

EXERCISE 1.6.3. Find the greatest common divisor of 70, 98, 108.

EXERCISE 1.6.4. Let a, b ∈ N be even. Prove that gcd(a, b) = 2 gcd(a/2, b/2).

EXERCISE 1.6.5. Show that if a ∈ N is even and b ∈ N is odd, then gcd(a, b) =

gcd(a/2, b).

EXERCISE 1.6.6. Prove the extended part of the Extended Euclidean Algorithm.

CHAPTER 2

Congruences

A congruence is nothing more than a statement about divisibility. The theory of con-

gruences was introduced by Carl Friedrich Gauss, in his monumental Disquisitiones Arith-

meticae (published in 1801, when he was 24;a translation is [Gau86]).

We start by introducing congruences and their properties. We then present solutions to

linear congruences which will serve as an introduction to the Chinese Remainder Theorem

that follows.

2.1. Introduction to Congruences

As we mentioned in the introduction, the theory of congruences was developed by

Gauss at the beginning of the nineteenth century.

DEFINITION 2.1.1. Given a, b ∈ Z and n ∈ N, we say that a is congruent to b modulo

n if n | (a − b), i.e., if ∃k ∈ Z such that a = b + kn. If a is congruent to b modulo n, we

write a ≡ b (mod n).

EXAMPLE 2.1.2. 19 ≡ 5 (mod 7). Similarly 2k+1 ≡ 1 (mod 2) which means every

odd number is congruent to 1 modulo 2.

Congruence is much like equality in many ways. For example:

THEOREM 2.1.3. Given a, b, c, d ∈ Z and n ∈ N. Then

(1) If a ≡ b (mod n), then b ≡ a (mod n).

(2) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod m).

(3) If a ≡ b (mod n), then a+ c ≡ b+ c (mod n).

(4) If a ≡ b (mod n), then a− c ≡ b− c (mod n).

(5) If a ≡ b (mod n), then ac ≡ bc (mod n).

(6) If c > 0 and a ≡ b (mod n), then ac ≡ bc (mod nc).

(7) If a ≡ b (mod n) and c ≡ d (mod n) then a + c ≡ b+ d (mod n).

(8) If a ≡ b (mod n) and c ≡ d (mod n) then a− c ≡ b− d (mod n).

(9) If a ≡ b (mod n) and c ≡ d (mod n) then ac ≡ bd (mod n).

PROOF.

(1) If a ≡ b (mod n), then n | (a − b). Thus ∃k ∈ Z such that a − b = kn. This

implies b− a = (−k)n and thus n | (b− a). Consequently b ≡ a (mod n).

21

22 2. CONGRUENCES

(2) Since a ≡ b (mod n) and b ≡ c (mod n), n | (a − b) and n | (b − c). As a

result, there ∃k, l ∈ Z such that a = b + kn and b = c + ln, which imply that

a = c+ (k + l)n. In other words, a = c (mod n).

(3) Since a ≡ b (mod n), n | (a− b). So if we add and subtract c we get

n | ((a + c)− (b+ c))

which means that

a+ c ≡ b+ c (mod n).

(4) Since a ≡ b (mod n), n | (a− b) so we can subtract and add c to get

n | ((a− c)− (b− c))

so

a− c ≡ b− c (mod n).

(5) If a ≡ b (mod n), n | (a− b). Thus there ∃k ∈ Z such that a− b = kn and as a

result ac− bc = (kc)n. Therefore

n | (ac− bc)

and hence

ac ≡ bc (mod n).

(6) If a ≡ b (mod n), n | (a− b). Thus there ∃k ∈ Z such that a− b = kn and as a

result

ac− bc = (k)cn.

Thus

nc | (ac− bc)

and hence

ac ≡ bc (mod nc).

(7) Since a ≡ b (mod n) and c ≡ d (mod n), n | (a− b) and n | (c−d). As a result,

there ∃k, l ∈ Z such that a− b = kn and c− d = ln. Note that

(a− b) + (c− d) = (a + c)− (b+ d) = (k + l)n.

As a result,

n | ((a+ c)− (b+ d)),

hence

a + c ≡ b+ d (mod n).

2.1. INTRODUCTION TO CONGRUENCES 23

(8) If a = b+ kn and c = d+ ln for k, l ∈ Z, we have

(a− b)− (c− d) = (a− c)− (b− d) = (k − l)n.

As a result,

n | ((a− c)− (b− d)),
hence

a− c ≡ b− d (mod n).

(9) ∃k, l ∈ Z such that such that a− b = kn and c− d = ln and thus ca− cb = (ck)n

and bc− bd = (bl)n. Note that

(ca− cb) + (bc− bd) = ac− bd = (kc− lb)n.

As a result,

n | (ac− bd),
hence

ac ≡ bd (mod n).

�

Here is a technical result which will be useful later:

THEOREM 2.1.4. Given a, b, c ∈ Z, if a | c, b | c, and a and b are relatively prime, then

ab | c.

PROOF. By Corollary 1.5.9, we know ∃m,n ∈ Z such that ma + nb = 1. Also,

because of the divisibility hypotheses, we also know ∃p, q ∈ Z such that c = pa and

c = qb. Compute:

c = c · 1 = c(ma + nb) = mca + ncb = mqba + npab = (mq + np)ab .

But this means ab | c, as desired. �

EXAMPLES 2.1.5.

(1) 14 ≡ 8 (mod 6) so 8 ≡ 14 (mod 6).

(2) Because 22 ≡ 10 (mod 6) and 10 ≡ 4 (mod 6), it is also true that 22 ≡ 4

(mod 6).

(3) 50 ≡ 20 (mod 15) so 50 + 5 = 55 ≡ 20 + 5 = 25 (mod 15).

(4) 50 ≡ 20 (mod 15) so 50− 5 = 45 ≡ 20− 5 = 15 (mod 15).

(5) 19 ≡ 16 (mod 3) so 2(19) = 38 ≡ 2(16) = 32 (mod 3).

(6) 19 ≡ 16 (mod 3) so 2(19) = 38 ≡ 2(16) = 32 (mod 2 · 3) or 38 ≡ 2(16) = 32

(mod 6).

(7) Because 19 ≡ 3 (mod 8) and 17 ≡ 9 (mod 8), we have 19+17 = 36 ≡ 3+9 =

12 (mod 8).

24 2. CONGRUENCES

(8) Because 19 ≡ 3 (mod 8) and 17 ≡ 9 (mod 8), we have 19− 17 = 2 ≡ 3− 9 =

−6 (mod 8).

(9) Because 19 ≡ 3 (mod 8) and 17 ≡ 9 (mod 8), we have 19(17) = 323 ≡ 3(9) =

27 (mod 8).

Here is a result which at first seems very simple, but turns out to be immensely useful

– so useful it has a name.

LEMMA 2.1.6. Euclid’s Lemma: Given x, y, z ∈ Z, if x | yz and gcd(x, y) = 1 then

x | z.

PROOF. From Corollary 1.5.9, we know ∃m,n ∈ Z such that mx+ ny = 1. Multiply-

ing by z, we get mxz + nyz = z. But we’ve assumed that x | yz, so x | nyz, and certainly

x | mxz, so x | mxz + nyz, i.e., x | z. �

We now present a theorem that will show one difference between equations and congru-

ences: in equations, if we divide both sides of the equation by a non-zero number, equality

holds. However, in congruences, this is not necessarily true. In other words, dividing both

sides of a congruence by the same integer does not necessarily preserve the congruence.

THEOREM 2.1.7.

(1) Given a, b, c ∈ Z and n ∈ N, define d = gcd(a, n) ∈ N. If ab ≡ ac (mod n) then

b ≡ c (mod n/d).

(2) In particular, if gcd(a, n) = 1 then

b = c (mod n) ⇔ ab ≡ ac (mod n).

PROOF. For Part 1, if ab ≡ ac (mod n), then

n | (ab− ac) = a(b− c).

Hence ∃k ∈ Z such that a(b − c) = kn. Dividing both sides by d, we get (a/d)(b− c) =
k(n/d) or (n/d) | (a/d)(b − c). Now, by Theorem 1.5.5 gcd(a/d, n/d) = 1 so Euclid’s

Lemma 2.1.6 tells us that (n/d) | (b− c). Hence b ≡ c (mod n/d).

For Part 2, the direction ⇒ is part 5 of Theorem 2.1.3, while ⇐ is a special case of

Part 1. �

EXAMPLE 2.1.8. 38 ≡ 10 (mod 7). Since gcd(2, 7) = 1, we have 19 ≡ 5 (mod 7).

One last technical result is worth stating clearly at this point:

THEOREM 2.1.9. Given n, d ∈ N such that d | n, there are exactly d values x ∈ Z, up

to congruence modulo n, satisfying x ≡ 0 (mod n/d).

2.1. INTRODUCTION TO CONGRUENCES 25

PROOF. Let xj = j(n/d) for j = 0, . . . , (d− 1). Certainly each of these d values xj is

a multiple of n/d and so solves x ≡ 0 (mod n/d). All we must show, then, is that every

solution x of x ≡ 0 (mod n/d) is congruent, modulo n, to one of these xj .

Let x be such a solution, so ∃k ∈ Z such that x = k(n/d). Use the Division Algorithm

for x divided by n, getting x = qn+ r for some q, r ∈ Z with 0 ≤ r < n. But

r = x− qn = k(n/d)− qd(n/d) = (k − qd)(n/d)
so r is a multiple of (n/d) which lies in the range [0, n). The only such multiples are the

x0, . . . , x(d−1) defined above; say r = xj . Then x = qn + r = qn + xj ≡ xj (mod xj),

so every solution x is congruent modulo n to exactly one of the d particular solutions

x1, . . . , x(d−1). �

26 2. CONGRUENCES

Exercises for §2.1.

EXERCISE 2.1.1. Determine whether 3 and 99 are congruent modulo 7 or not.

EXERCISE 2.1.2. Show that if x is an odd integer, then x2 ≡ 1 (mod 8).

EXERCISE 2.1.3. Show that if a, b ∈ Z and m,n ∈ N are such that n | m and a ≡ b

(mod m), then a ≡ b (mod n).

EXERCISE 2.1.4. Show that if n, k ∈ N and {a1, . . . , ak, b1, . . . , bk} ⊂ Z satisfy ai ≡ bi

(mod n) for i = 1, 2, ..., k, then
∑k

i=1 ai ≡
∑k

i=1 bi (mod n).

EXERCISE 2.1.5. For which n ∈ N is it true that 1 + 2 + ... + (n− 1) ≡ 0 (mod n)?

2.2. LINEAR CONGRUENCES 27

2.2. Linear Congruences

Because congruence is analogous to equality, it is natural to ask about the analogues

of linear equations, the simplest equations one can solve in algebra, but using congruence

rather than equality. In this section, we discuss linear congruences of one variable and their

solutions.

We start with a definition:

DEFINITION 2.2.1. Given constants a, b ∈ Z and n ∈ Z, a congruence of the form

ax ≡ b (mod n) where x ∈ Z is unknown is called a linear congruence in one variable.

If a linear congruence has one solution, then it has infinitely many:

THEOREM 2.2.2. Given constants a, b ∈ Z, n ∈ Z, and a solution x ∈ Z to the linear

congruence ax ≡ b (mod n), any other x′ ∈ Z satisfying x′ ≡ x (mod n) is also a

solution of the same congruence.

[Note: in the early history of number theory, before Gauss, one talked about

DEFINITION 2.2.3. An algebraic equation whose constants and variables are all inte-

gers is called a Diophantine equation.

Then the modern linear congruence ax ≡ b (mod n), for a, b ∈ Z and n ∈ N is equivalent

to the linear Diophantine equation ax− ny = b in the two unknowns x and y.]

The following gives a fairly complete characterization of solutions of linear congru-

ences:

THEOREM 2.2.4. Let a, b ∈ Z and n ∈ N and consider the linear congruence

ax ≡ b (mod n) .

Setting d = gcd(a, n), we have

(1) If d ∤ b, then the congruence has no solutions.

(2) If d | b, then the congruence has exactly d solutions which are distinct modulo n.

PROOF. For Part 1, we prove its contrapositive. So assume the congruence has solu-

tions, meaning ∃x, k ∈ Z such that ax− b = kn, or ax− kn = b. But since d = gcd(a, n)

is a common divisor of a and n, it divides the linear combination ax−kn = b. Hence d | b.
Now for Part 2, assume d | b, so ∃k ∈ Z such that kd = b. But from Theorem 1.5.8

we know ∃p, q ∈ Z such that d = pa + qn. This means that kpa + kqn = kd = b or,

rearranging, a(kp)− b = (−kq)n. Hence n | a(kp) = b, i.e., a(kp) ≡ b (mod n) and thus

x = kp is one solution to the linear congruence ax ≡ b (mod n).

Finally, let us prove that there are the correct number of solutions, mod n, of the con-

gruence equation. We have just seen that there is at least one x ∈ Z satisfying ax ≡ b

(mod n). Let y ∈ Z be any other solution. Then ax ≡ b ≡ ay (mod n). By part (2) of

28 2. CONGRUENCES

Theorem 2.1.7, x ≡ y (mod n/d), or δ = y−x ≡ 0 (mod n/d). Now by Theorem 2.1.9,

there are exactly d possibilities, modulo n, for this δ. Thus there are d solutions of ax ≡ b

(mod n) of the form x+ δ. �

REMARK 2.2.5. Notice that if a ∈ Z and n ∈ N are relatively prime, then ∀b ∈ Z there

is a unique solution modulo n to the equation ax ≡ b (mod n).

EXAMPLE 2.2.6. Let us find all the solutions of the congruence 3x ≡ 12 (mod 6).

Notice that gcd(3, 6) = 3 and 3 | 12. Thus there are three incongruent solutions modulo 6.

Using the Euclidean Algorithm to find the solution of the equation 3x − 6y = 12 we get

a solution x0 = 6. Thus the three incongruent (modulo 6) solutions are given by x1 = 6

(mod 6), x1 = 6 + 2 = 2 (mod 6) and x2 = 6 + 4 = 4 (mod 6).

As we mentioned in Remark 2.2.5, the congruence ax ≡ b (mod n) for a, b ∈ Z and

n ∈ N has a unique (modulo n) solution if gcd(a, n) = 1. This will allow us to talk about

modular inverses.

DEFINITION 2.2.7. Given a ∈ Z and n ∈ N, a solution to the congruence ax ≡ 1

(mod n) for (a, n) = 1 is called the inverse of a modulo n. We denote such an inverse by

a−1, with the n to be understood from context.

Stating formally what was just recalled from Remark 2.2.5, we have

COROLLARY 2.2.8. Given a ∈ Z and n ∈ N which are relatively prime, the modular

inverse a−1 exists and is unique modulo n.

EXAMPLE 2.2.9. The modular inverse 7−1of 7 modulo 48 is 7. Notice that a solution

of 7x ≡ 1 (mod 48) is x ≡ 7 (mod 48).

2.2. LINEAR CONGRUENCES 29

Exercises for §2.2.

EXERCISE 2.2.1. Find all solutions of 3x ≡ 6 (mod 9).

EXERCISE 2.2.2. Find all solutions of 3x ≡ 2 (mod 7).

EXERCISE 2.2.3. Find inverses modulo 13 of 2 and of 11.

EXERCISE 2.2.4. Given a ∈ Z and n ∈ N, show that if a−1 is the inverse of a modulo

n and b−1 is the inverse of b modulo n, then a−1b−1 is the inverse of ab modulo n.

30 2. CONGRUENCES

2.3. The Chinese Remainder Theorem

In this section, we discuss solutions of systems of congruences having different moduli.

An example of this kind of systems is the following: find a number that leaves a remainder

of 1 when divided by 2, a remainder of 2 when divided by three and a remainder of 3 when

divided by 5. We shall see that there is a systematic way of solving this kind of system.

THEOREM 2.3.1. The Chinese Remainder Theorem: Fix a k ∈ N. Then given

b1, . . . , bk ∈ Z and n1, . . . , nk ∈ N, the system of congruences

x ≡ b1 (mod n1)

x ≡ b2 (mod n2)

...

x ≡ bk (mod nk)

has a solution x ∈ Z if the n1, n2, . . . , nk are pairwise relatively prime. The solution is

unique modulo N = n1 n2 . . . nk.

PROOF. For j = 1, . . . , k, let Nj = N/nj . Since the moduli nj are pairwise relatively

prime, gcd(Nj, nj) = 1 – after all, Nj is the product of all the moduli except nj . Hence by

Corollary 2.2.8, ∃yj = N−1
j modulo nj , satisfying Njyj ≡ 1 (mod nj). Consider now

x =

k∑

j=1

bjNjyj

Since

Nj ≡ 0 (mod ni) ∀i 6= j,

we see that

x ≡ bjNjyj ≡ bj (mod nj).

Hence x is a solution to the system of congruences.

We have to show now that any two solutions are congruent modulo N . Suppose that

x and y are both solutions of the system of congruences. Then x ≡ bj ≡ y (mod nj), or

nj | x−y, for all 1 ≤ j ≤ k. But then, since the moduli are pairwise relatively prime, using

Theorem 2.1.4 k times (formally, this needs to be done by induction!), we can conclude that

N = n1 . . . nk | x− y or x ≡ y (mod N). �

EXAMPLE 2.3.2. Solve the system

x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5).

2.3. THE CHINESE REMAINDER THEOREM 31

We have N = 2 · 3 · 5 = 30. Also

N1 = 30/2 = 15, N2 = 30/3 = 10, and N3 = 30/5 = 6.

So we have to solve now 15y1 ≡ 1 (mod 2) – a solution is y1 ≡ 1 (mod 2). In the same

way, we find that y2 ≡ 1 (mod 3) and y3 ≡ 1 (mod 5). Therefore

x = 1 · 15 · 1 + 2 · 10 · 1 + 3 · 6 · 1 = 53 ≡ 23 (mod 30).

32 2. CONGRUENCES

Exercises for §2.3.

EXERCISE 2.3.1. Find an integer that leaves a remainder of 2 when divided by either 3

or 5, but that is divisible by 4.

EXERCISE 2.3.2. Find all integers that leave a remainder of 4 when divided by 11 and

leaves a remainder of 3 when divided by 17.

EXERCISE 2.3.3. Find all integers that leave a remainder of 1 when divided by 2, a

remainder of 2 when divided by 3 and a remainder of 3 when divided by 5.

EXERCISE 2.3.4. A band of 17 pirates steal some gold bars. When they try to divide

the spoils equally, 3 bars are left over – so a fight breaks out, killing one. This immediately

brings calm as they see if the gold can now be evenly shared. Unfortunately, there are now

10 bars left out, so they fight again. After the inevitable (single) further death, a perfect

division is now possible. What is the minimum number of gold bars the pirates could have

started with? [This is apparently an ancient Chinese problem.]

2.4. ANOTHER WAY TO WORK WITH CONGRUENCES: EQUIVALENCE CLASSES 33

2.4. Another Way to Work with Congruences: Equivalence Classes

In this section, we shall consider another way to work with congruences, based upon

the following:

DEFINITION 2.4.1. Let S be a set and ∼= a relation defined on S. (That is, ∀x, y ∈ S,

the statement “x ∼= y” may be true or false.) If ∼= satisfies the following three properties,

it is called an equivalence relation:

• [Reflexivity] ∀x ∈ S, x ∼= x.

• [Symmetry] ∀x, y ∈ S, x ∼= y ⇔ y ∼= x.

• [Transitivity] ∀x, y, z ∈ S, x ∼= y and y ∼= z ⇒ x ∼= z.

If ∼= is an equivalence relation on the set S and x ∈ S, then the set [x] = {y ∈ S |
y ∼= x} ⊆ S is called the equivalence class of x. We write S/ ∼= for the set of equivalence

classes in S. And if C ∈ S, then any r ∈ S such that C = [r] is called a representative of

the equivalence class C.

THEOREM 2.4.2. Let S be a set and ∼= an equivalence relation defined on S. Then

(1) ∀x ∈ S, x ∈ [x].

(2) ∀x, y ∈ S, either [x] = [y] or [x] ∩ [y] = ∅, but not both.

PROOF. (1): This is just the reflexivity of ∼= .

(2): Suppose z ∈ [x]∩ [y]. This means z ∼= x and z ∼= y, so by symmetry y ∼= z and by

transitivity, x ∼= y.

Now if a ∈ [x] and b ∈ [y], then a ∼= x and b ∼= y. By transitivity, a ∼= x ∼= y ∼= b.

Thus a ∈ [y] and, by symmetry, b ∼= x so b ∈ [x].

Therefore [x] ⊆ [y] and [y] ⊆ [x], and thus [x] = [y].

Since the above construction only relied on the existence of some element z ∈ [x]∩ [y],
we see that the only way we could fail to have [x] = [y] is if [x] ∩ [y] = ∅. �

EXAMPLE 2.4.3. On the set S = {(n,m) | n,m ∈ Z, m 6= 0} we can define the

relation (a, b) ∼= (c, d) if ad = cb. Then S/ ∼= is nothing other than the rational numbers,

Q!

Now let us specialize the concept of equivalence class to the case of congruences:

PROPOSITION 2.4.4. Given n ∈ N, the relation on Z defined by

a ∼=n b⇔ a ≡ b (mod n)

(which we shall write a ∼= b if the n is clear from context) is an equivalence relation.

DEFINITION 2.4.5. Given n ∈ N and a ∈ Z, the equivalence class of a under the

above equivalence relation is called the congruence class of a mod n and is written [a]n
(or, by abuse of notation, merely [a] if the n is understood from the context). The set of

34 2. CONGRUENCES

equivalence classes Z/ ∼=n is called the integers mod n and is written Z/nZ (or, by some

authors, Z/n or Zn).

THEOREM 2.4.6. Given n ∈ N, Z/nZ has n elements, with representatives 0, . . . , n−1
of these distinct equivalence classes. That is,

Z/nZ = {[0]n, . . . , [n− 1]n} .

PROOF. Given n ∈ N and a ∈ Z, the Division Algorithm tells us there is a unique

pair q, r ∈ Z such that a = qn + r and 0 ≤ r < n. Note that a ≡ r (mod n) or,

equivalently, a ∈ [r]. Thus every a ∈ Z is an element of a unique equivalence class

[r] for r ∈ {0, . . . , n − 1}. Since each such r ∈ [r], uniquely!, the equivalence classes

[0], . . . , [n− 1] are all distinct. �

The remarkable thing about these Z/nZ is that we can do much of the usual integer

arithmetic in them; in fact, sometimes we can do a bit more than the usual.

DEFINITION 2.4.7. Given n ∈ N and C,D ∈ Z/nZ, define C + D = [a + b] and

C · D = [a ·m] where a and b are any representatives of the congruence classes C and D,

respectively.

THEOREM 2.4.8. The operations + and · on Z/nZ are well-defined. That is, they are

independent of the choices of representatives of the congruence classes.

PROOF. Say n ∈ N and C,D ∈ Z/nZ. Let a, p, b, q ∈ Z be such that C = [a] = [p]

and D = [b] = [q]. Then p ≡ a (mod n) and q ≡ b (mod n). But then Theorem 2.1.3

tells us that a + b ≡ p + q (mod n) and a · b ≡ p · q (mod n), so [a + b] = [p + q] and

[a · b] = [p · q]. This means that C + D can be defined either as [a + b] or as [p + q] and it

will be the same thing, as asserted, and likewise for C · D. �

These new operations are quite nice:

THEOREM 2.4.9. Given n ∈ N, the addition and multiplication on Z/nZ

(1) are commutative and associative;

(2) multiplication distributes over addition;

(3) both operations have an identity – [0] for addition and [1] for multiplication;

(4) every element of Z/nZ has an additive inverse – the inverse of [a] is [−a] (or

[n− a], another name for the same thing); and

(5) an element [a] ∈ Z/nZ has a multiplicative inverse [a]−1 if and only if gcd(a, n) =

1; this inverse is unique when it exists.

PROOF. Left to the reader. Note the last point is basically Corollary 2.2.8 restated in

the language of congruence classes. �

2.4. ANOTHER WAY TO WORK WITH CONGRUENCES: EQUIVALENCE CLASSES 35

We can also restate many of our other, earlier results beside just Corollary 2.2.8 in terms

of congruence classes. Most of these shall be left to the reader, but here is one example:

THEOREM 2.4.10. Given a, b ∈ Z and n ∈ N, let d = gcd(a, n). Consider the equation

[a] · x = [b]

where x ∈ Z/nZ. Then

(1) If d ∤ b, there are no solutions.

(2) If d | b, this equation has exactly d solutions in Z/nZ.

PROOF. Left to the reader; this is really just Theorem 2.2.4 stated differently. �

36 2. CONGRUENCES

Exercises for §2.4.

EXERCISE 2.4.1. When the rational numbers Q are described as in Example 2.4.3, we

define addition by [(n,m)] + [(p, q)] = [(nq + mp,mq)] and multiplication by [(n,m)] ·
[(p, q)] = [(np,mq)], where n,m, p, q ∈ Z and neither m nor q is 0. Prove a version of

Theorems 2.4.8 for this version of Q.

What are the additive and multiplicative identities in this Q? Does every element (or

nearly every element) of Q have an additive and multiplicative inverse – if so, give a for-

mula for those inverses; if not, why not?

EXERCISE 2.4.2. Restate the Chinese Remainder Theorem in terms of congruence

classes and equations in various Z/nZ’s rather than congruences.

EXERCISE 2.4.3. Prove the statements in this section which have proofs “left to the

reader.”

EXERCISE 2.4.4. State and prove congruence class versions of any results about con-

gruences from sections 2.1 and 2.2 which do not have versions in this section.

2.5. EULER’S φ FUNCTION 37

2.5. Euler’s φ Function

Euler made the following definition, and it was good.

DEFINITION 2.5.1. Given n ∈ N,

φ(n) = # ({m ∈ Z | 0 ≤ m < n and gcd(m,n) = 1}) .

In other words, φ(n) counts the number of non-negative integers less than n which are

relatively prime to n.

This is called Euler’s φ function, or Euler’s totient function (“totient” rhymes with

“quotient”; this name was give to it by the English mathematician Sylvester).

Here’s one thing it is good for:

THEOREM 2.5.2. Given n ∈ N, φ(n) is the number of elements of Z/nZ which are

(multiplicatively) invertible.

PROOF. This is just Theorem 2.4.9 part (5) �

One quite surprising fact about Euler’s totient function is that it is multiplicative, at

least for relatively prime numbers:

THEOREM 2.5.3. Given n,m ∈ Z, if gcd(n,m) = 1 then φ(nm) = φ(n)φ(m).

PROOF. This is actually a nice application of the Chinese Remainder Theorem, as we

shall see.

Fix n,m ∈ N which are relatively prime. For k ∈ N, let

(Z/kZ)∗ = {x ∈ Z/kZ | x is invertible}

so φ(k) = #((Z/kZ)∗). (This notation means the number of things in the set (Z/kZ)∗.)

Now define the set of pairs

(Z/nZ)∗ × (Z/mZ)∗ = {(a, b) | a ∈ (Z/nZ)∗ and b ∈ (Z/nZ)∗} .

Notice that #((Z/nZ)∗ × (Z/mZ)∗) = #((Z/nZ)∗) · #((Z/mZ)∗) = φ(n)φ(m), since

each part of the pair is free to be whichever element it wants of the respective set, so the

total number of pairs is the size of the first set times the size of the second. Therefore,

if we can prove that (Z/nZ)∗ × (Z/mZ)∗ can be put into bijective correspondence with

(Z/(nm)Z)∗, then we will have

φ(n)φ(m) = # ((Z/nZ)∗ × (Z/mZ)∗) = #((Z/(nm)Z)∗) = φ(nm)

as desired, since bijective sets have the same number of elements.

The correspondence is given by the function

F : (Z/(nm)Z)∗ → (Z/nZ)∗ × (Z/mZ)∗ : [x]nm 7→ ([x]n, [x]m) .

38 2. CONGRUENCES

We must show F is well-defined, 1-1, and onto. Well-defined means that for some

[x]nm, if y ∈ Z is another representative of the congruence class [x]nm, then ([x]n, [x]m) =

([y]n, [y]m) so that F is defined only by the class [x]nm, not by its choice of representative

x. But this is easy, since y ∈ [x]nm means y ∼=nm x so ∃k ∈ Z such that y− x = k(nm) =

(km)n = (kn)m. These last two versions mean that y ∼=n x and y ∼=m x, so [x]n = [y]n
and [x]m = [y]m, which means F is well-defined.

Now let us assume that x, y ∈ Z have F([x]nm) = F([y]nm), i.e., [x]n = [y]n and

[x]m = [y]m. That is, z = x− y ∈ Z solves the system

z ≡ 0 (mod n)

z ≡ 0 (mod m) .

But z = 0 also solves this system, and the Chinese Remainder Theorem tells us that so-

lutions of this system (which is an appropriate system for the CRT since gcd(n,m) = 1)

are unique modulo nm. Therefore, x − y ≡ 0 (mod nm), so x ≡ y (mod nm). Hence

[x]nm = [y]nm, and thus F is 1-1.

Now, given any pair ([x]n, [y]m) ∈ (Z/nZ)∗ × (Z/mZ)∗, consider the system of con-

gruences

z ≡ x (mod n)

z ≡ y (mod m) ,

which system is again CRT-ready since gcd(n,m) = 1. Therefore there exists a solution to

this system, call it z ∈ Z, and F([z]nm) = ([x]n, [y]m). Thus F is onto as well. �

2.5. EULER’S φ FUNCTION 39

Exercises for §2.5.

EXERCISE 2.5.1. Compute φ(n) for n = 2, 3, 5, 7, 11, 13, 17. Make a general conjec-

ture. Can you prove it?

EXERCISE 2.5.2. Compute φ(n) for n = 2, 4, 8, 16, 32, 64. Make a conjecture about

φ(2k) for k ∈ N. Prove it!

CHAPTER 3

Prime Numbers

Primes are the atoms out of which the more complicated, composite integers (the

molecules, in this metaphor) are built. In this chapter we study some of their basic prop-

erties, prove the aptly named Fundamental Theorem of Arithmetic, and go on to Wilson’s

Theorem.

3.1. Basics and the FTA

First of all, we make the

DEFINITION 3.1.1. We say p ∈ N is prime if p > 1 and the only natural numbers

which divide p are 1 and p.

EXAMPLE 3.1.2. Some primes are 2, 3, 5, 7, 11, 13, and 17. Notice 2 is the only even

prime (clearly – any other would be a multiple of 2 and hence could not be prime), and has

some unusual properties – the joke is that “2 is the oddest prime.”

The largest prime known to humans at the time of this writing is

257,885,161 − 1

which was proven to be prime in January of 2013 by a distributed computer program called

GIMPS [the Great Internet Mersenne Prime Search] running on hundreds of machines

across the Internet.

In contrast, we also use the following term

DEFINITION 3.1.3. A number c ∈ N which is greater than 1 and not prime is called

composite.

How far does a naive, brute-force check have to go in order to see if a number is

composite?

THEOREM 3.1.4. If n is a composite, then it has a positive divisor d satisfying d ≤ √n.

PROOF. Suppose n is composite. Then it has some divisor a ∈ N. Notice that n = a· n
a

,

so n
a
∈ N is also a divisor. But a and n

a
cannot both be less than

√
n, because if they were

we would have

n = a · n
a
<
√
n · √n = n

which would be a contradiction. Hence either a or n
a

is the divisor d promised by the

theorem statement. �

41

42 3. PRIME NUMBERS

Euclid’s Lemma (Lemma 2.1.6) takes a particularly nice form if the divisor involved is

prime:

PROPOSITION 3.1.5. Suppose p is a prime and a, b ∈ Z. If p | ab then p | or p | b.

PROOF. Notice that gcd(p, a) | p, therefore gcd(p, a) is either 1 or p since p is prime.

But also gcd(a, p) | a, so either p | a or gcd(a, p) = 1. If p | a, we are done. If not, since

therefore gcd(a, p) = 1, Euclid’s Lemma 2.1.6 tells us that p | b. �

A more general form of this is

COROLLARY 3.1.6. Suppose p is a prime, k ∈ N, and a1, . . . , ak ∈ Z. Then if p |
a1 . . . ak, it follows that p divides at least one of the aj .

PROOF. Left to the reader (use induction on k). �

This leads to the aptly named

THEOREM 3.1.7. The Fundamental Theorem of Arithmetic: Let n ∈ N, n ≥ 2. Then

∃k ∈ N and primes p1, . . . , pk such that n = p1 . . . pk. Furthermore, if l ∈ N and q1, . . . , ql

are also primes such that n = q1 . . . ql, then l = k and the factorization in terms of the q’s

is merely a reordering of that in term s of the p’s.

PROOF. We use the Second Principle of Mathematical induction for the existence part.

The general statement we are proving is ∀n ∈ Z, n > 1 ⇒ S(n), where S(n) is the

statement “∃k ∈ N and primes p1, . . . , pk such that n = p1 . . . pk.”

As the base case, say n = 2. Then k = 1 and p1 = 2 works.

Now assume S(k) is true for all k < n. If n is prime, then k = 1 and p1 = n works.

So suppose n is instead composite, with divisor d 6= 1, n. Then both d, n
d
< n, so by the

inductive hypothesis ∃k, k′ ∈ N and primes p1, . . . , pk, p
′
1, . . . , p

′
k′ such that d = p1 . . . pk

and n
d
= p′1 . . . p

′
k′ . So then n is the product

n = p1 . . . pk · p′1 . . . p′k′

of the k + k′ primes. Hence S(n) is true as well, and so prime factorizations always exist.

Now suppose n ∈ Z satisfies n > 1 and ∃k, l ∈ N and both primes p1, . . . pk and

q1, . . . , ql such that

p1 . . . pk = n = q1 . . . ql .

Certainly p1 divides the left hand side of these dual expressions for n. Then by Corol-

lary 3.1.6, p1 divides one of the qj , which means it must be that p1 = qj since they are

prime. Removing the p1 from the left and the qj from the right, we get

p2 . . . pk = n = q1 . . . qj−1 · qj+1 . . . ql .

3.1. BASICS AND THE FTA 43

Continuing in this way, either we get the uniqueness statement in the theorem, or we run

out of p’s or q’s. However, we cannot run of of primes on one side before the other, because

that would make a product of primes on one side equal to 1, which is impossible. �

44 3. PRIME NUMBERS

Exercises for §3.1.

EXERCISE 3.1.1. Provide all the details of the proof of Corollary 3.1.6.

EXERCISE 3.1.2. State and prove a theorem about the prime factorizations of numbers

a, b ∈ N and of their gcd.

EXERCISE 3.1.3. A number n ∈ Z, n > 1 is called square-free if it is not divisible by

the square of any natural number other than 1. Prove that an n ∈ Z, n ≥ 1 is square-free if

and only if it is the product of distinct primes.

3.2. WILSON’S THEOREM 45

3.2. Wilson’s Theorem

In this section, we prove a nice theorem usually named after an 18th century English

mathematician ... although it was actually first stated by Ibn al-Haytham nearly 800 years

earlier.

First, we need a

LEMMA 3.2.1. Let p be a prime. Then n ∈ N equals its own inverse mod p if and only

if p | n + 1 or p | n− 1, i.e., iff n ≡ ±1 (mod p).

PROOF. Say p is a prime and n ∈ N equals its own inverse mod p. That means that

n2 = n ·n ≡ 1 (mod p). By definition, p | n2−1 = (n+1)(n−1). By Proposition 3.1.5,

this means that either p | n + 1 or p | n− 1.

For the converse, suppose n ≡ 1 (mod p) or n ≡ −1 (mod p). Then, by Theo-

rem 2.1.3, n2 ≡ (±1)2 = 1 (mod p), so n equals its own inverse mod p. �

This Lemma is a key step in

THEOREM 3.2.2. Wilson’s Theorem Given p ∈ N such that p ≥ 2, p is prime iff

(p− 1)! ≡ −1 (mod p).

PROOF. Suppose p is prime. Consider the terms of (p − 2)!: every one has an inverse

mod p by Corollary 2.2.8, and only 1 equals its own inverse mod p (so would p−1, but it is

not in the product (p− 2)! by Lemma 3.2.1. Hence in (p− 1)! we can group the terms into

pairs ((p − 3)/2 of these pairs) which are inverses mod p, leaving out only 1 and (p − 1).

That is

(p− 1)! ≡ 1(p−3)/2(p− 1) ≡ p− 1 ≡ −1 (mod p)

Conversely, suppose p ∈ N satisfies p ≥ 2 and (p−1)! ≡ −1 (mod p). We can rewrite

that congruence as (p− 1)! + 1 ≡ 0 (mod p), or p | ((p− 1)! + 1).

Now let d ∈ N be a divisor of p such that d 6= p. It follows that d is one of the numbers

in the product (p − 1)!, so d | (p − 1)!; also, since d | p and p | ((p − 1)! + 1), it follows

that d | ((p − 1)! + 1). Therefore, d | ((p − 1)! + 1) − (p − 1)! = 1 by Theorem 1.3.9,

which means d = 1.

In other words, if d ∈ N is a divisor of p, it must be either p or 1, so p is prime. �

EXAMPLE 3.2.3. Let’s work through one direction of the proof for a simple case, say

of p = 7. We start by finding all the inverses of the numbers 2, . . . , 6 (by brute force, in this

small case): 2 · 4 ≡ 1 (mod 7) and 3 · 5 ≡ 1 (mod 7), meaning that 2−1 ≡ 4 (or4−1 ≡ 2)

and 3−1 ≡ 5 (or 5−1 ≡ 3).

Then

(p− 2)! = 5! = 5 · 4 · 3 · 2 · 1 = (5 · 3) · (4 · 2) ≡ 1 · 1 ≡ 1 (mod 7)

46 3. PRIME NUMBERS

which in turn means that

(p− 1)! = 6! = 6 · 5! ≡ 6 · 1 ≡ 6 ≡ 7− 1 ≡ −1 (mod 7) .

Notice that Wilson’s Theorem can be used to build a test for primality: see if a number

n satisfies (n − 1)! ≡ −1 (mod n) and, if so, n is prime. This is an entirely impractical

test, but it is our first example of a simple computational congruence involving an integer

which can tell us that that integer is prime.

3.3. MULTIPLICATIVE ORDER AND APPLICATIONS 47

3.3. Multiplicative Order and Applications

In this section we prove two very useful results called Euler’s Theorem and Fermat’s

Little Theorem (a special case of Euler’s). We do not follow the proof strategy of Euler and

Fermat, however, instead using an approach inspired by abstract algebra and Lagrange’s

Theorem in that subject.

First we need the

DEFINITION 3.3.1. Suppose n ∈ N and a ∈ Z satisfy n ≥ 2 and gcd(a, n) = 1.

Then we define the multiplicative order of a in mod n (called just the order when the

multiplicative and n can be understood from context) to be the smallest k ∈ N such that

ak ≡ 1 (mod n). The order of a in mod n is written ordn(a).

Let us verify something which should probably always be checked for a new definition:

PROPOSITION 3.3.2. Given relatively prime numbers n ∈ N and a ∈ Z with n ≥ 2,

ordn(a) is well-defined.

PROOF. The problem in the definition of ordn(a) might be that there might not be any

value of k ∈ N at all for which ak ≡ 1 (mod n).

But notice that this is a congruence, so we are really only concerned with the elements

ak up to their congruence class.

So look at {[ap]n | p ∈ N} and imagine putting the natural numbers p ∈ N into different

boxes based on what is the corresponding congruence class [ap] ∈ Z/nZ. Since there are

infinitely many elements in N and only n elements in Z/nZ – n boxes – by the Pigeonhole

Principle (Theorem 1.1.2) there must be two (actually, infinitely many pairs of) distinct

values p, q ∈ N such that p and q end up in the same box, meaning [ap] = [aq]. Assume

without loss of generality that p > q, so p− q ∈ N.

We are given that gcd(a, n) = 1, so by Corollary 2.2.8, a−1 exists in mod n. Thus

ap−q ≡ ap (a−1)q ≡ aq (a−1)q ≡ a0 ≡ 1 (mod n)

(replacing ap with aq in the middle of this congruence since we know that [ap] = [aq],

which means ap ≡ aq (mod n)) and therefore the set of k ∈ N for which ak ≡ 1 (mod n)

is non-empty. The order is the smallest such value, which exists by the Well-Ordering

Principle. �

Here now is a theorem from abstract algebra (Lagrange’s Theorem) translated into the

current context:

THEOREM 3.3.3. Given relatively prime numbers n ∈ N and a ∈ Z, ordn(a) | φ(n).

PROOF. Start by looking at the congruence classes [a], [a2], [a3] They go up to

[aordn(a)] = [1] and then start to repeat, so the set

〈a〉 = {[aj] | j ∈ N, j ≤ ordn(a)}

48 3. PRIME NUMBERS

is a set of ordn(a) elements of Z/nZ (in group theory, this set 〈a〉 is called the cyclic

subgroup of (Z/nZ)∗ generated by a). Notice that because aordn(a) ≡ 1 (mod n), [1] ∈
〈a〉. Also, since if a−1 is the inverse of a mod n, (a−1)k is the inverse of ak for k ∈ N, we

see that 〈a〉 ⊆ (Z/nZ)∗.

To finish, we shall show that (Z/nZ)∗ is made up of some number, say m, of pieces,

which we shall call cosets, each of which is bijective with 〈a〉. These pieces will thus all

have ordn(a) elements, so m · ordn(a) = # ((Z/nZ)∗) = φ(n), from which our desired

result follows.

A coset of 〈a〉 is a set of the form

x 〈a〉 = {[x] · [aj] = [x aj] | j ∈ N, j ≤ ordn(a)}

where [x] ∈ (Z/nZ)∗. We have observed that [1] ∈ 〈a〉, so ∀[x] ∈ (Z/nZ)∗, [x] ∈ x 〈a〉,
meaning that every congruence class [x] ∈ (Z/nZ)∗ is in some coset, i.e.,

Z/nZ ⊆
⋃

[x]∈(Z/nZ)∗

x 〈a〉 .

In fact, each coset x 〈a〉 is bijective with 〈a〉. The bijection is the map fx : 〈a〉 → x 〈a〉
defined by fx([a

j]) = [xaj] for j ∈ N with j ≤ ordn(a). This map is a bijection because it

has an inverse fx−1 , coming from the inverse mod n of x.

Now suppose x 〈a〉 and y 〈a〉 are two cosets. I claim that either x 〈a〉 = y 〈a〉 or

x 〈a〉⋂ y 〈a〉 = ∅. For this, suppose x 〈a〉⋂ y 〈a〉 6= ∅, so ∃[z] ∈ x 〈a〉⋂ y 〈a〉. That

means that ∃j, k ∈ N such that j ≤ ordn(a), k ≤ ordn(a), and [xaj] = [z] = [yak]. In

other words,

xaj ≡ yak (mod n) .

Without loss of generality, assume j ≤ k. Then if we multiply both sides of the above

congruence by (a−1)j , we have x ≡ yak−j (mod n). But this means that every element

[xap] ∈ x 〈a〉 is can be expressed as [yap+k−j] ∈ y 〈a〉, and every element [yaq] ∈ y 〈a〉 is

can be expressed as [xaq+j−k] ∈ x 〈a〉. Thus x 〈a〉 = y 〈a〉. �

That was a lot of work, but now we get the famous theorems of Fermat’s Little and of

Euler very easily.

THEOREM 3.3.4. Euler’s Theorem Say a ∈ Z and n ∈ N satisfy gcd(a, n) = 1. Then

aφ(n) ≡ 1 (mod n).

PROOF. The previous theorem, 3.3.3, told us that ordn(a) | φ(n), so ∃m ∈ Z such that

m · ordn(a) = φ(n). By the definition of order, this means

aφ(n) ≡ am ordn(a) ≡
(
aordn(a)

)m ≡ 1m ≡ 1 (mod n).

�

3.3. MULTIPLICATIVE ORDER AND APPLICATIONS 49

COROLLARY 3.3.5. Fermat’s Little Theorem If p is a prime and a ∈ Z satisfies

gcd(p, a) = 1 then ap−1 ≡ 1 (mod p).

PROOF. We have seen that for primes p, φ(p) = p − 1, so there is very little to do

here. �

Sometimes one sees Fermat’s Little Theorem in the following, different form:

THEOREM 3.3.6. If p is a prime then ∀a ∈ Z, ap ≡ a (mod p).

PROOF. If gcd(a, p) = 1, then by Fermat’s Little, ap−1 ≡ 1 (mod p). Multiplying

both sides of this congruence by a yields the desired result.

If instead gcd(a, p) 6= 1, it must be that gcd(a, p) = p since that gcd is a divisor of p,

which is prime. The gcd is also a divisor of a, so in fact p | a. But then a and all its powers

are congruent mod p to 0, so ap ≡ 0 ≡ a (mod p). �

50 3. PRIME NUMBERS

Exercises for §3.3.

EXERCISE 3.3.1. What are the remainder when 15! is divided by 17 and the remainder

when 2 · (26!) is divided by 29?

EXERCISE 3.3.2. We know 17 is prime (it’s just a wonderful number, isn’t it?). But

just to be sure, use Wilson’s Theorem to prove it.

EXERCISE 3.3.3. Can we build a test for primality out of Fermat’s Little Theorem? If

so, would it be better (more efficient) than one based on Wilson’s Theorem? How would it

work? Write a clear, formal statement of your proposed primality test.

If you know a programming language, write some code to try out your primality test.

If not (or, in any case, after the programming), do a little research to see if this question

has already been investigated and, if so, what was the conclusion. Give either a formal

statement of the test and formal result describing its efficacy or a counter-example to your

test that you found in the literature.

EXERCISE 3.3.4. Suppose p is an odd prime. Prove that if the quadratic congruence

x2 + 1 ≡ 0 (mod p) has a solution, then p ≡ 1 (mod 4). [Hint: Apply Fermat’s Little

Theorem to a solution a of the congruence, then multiply and divide by 2 in the power.]

3.4. ANOTHER APPROACH TO FERMAT’S LITTLE AND EULER’S THEOREMS 51

3.4. Another Approach to Fermat’s Little and Euler’s Theorems

There is another way to think about these theorems which we shall explain here, be-

cause it usefully fills out our understanding of multiplication in Z/nZ.

In this case, we shall consider the theorems in the reverse order to what we used above

– which is in fact more historically accurate.

THEOREM 3.4.1. Fermat’s Little Theorem, Redux If p is a prime and a ∈ Z satisfies

gcd(p, a) = 1 then ap−1 ≡ 1 (mod p).

PROOF. Let’s start by proving that the set

Ma = {[0]p, [a]p, [2a]p, . . . , [(p− 1)a]p}

of multiples of [a]p in Z/pZ has p elements.

There are only p congruence classes named between the { and }, so the set cannot have

more than p elements.

Now look at two elements in this set, call them [ja]p and [ka]p with 0 ≤ j, k < p,

and suppose they are equal. That means that ja ≡ ka (mod p), or p | (j − k)a. By

Proposition 3.1.5, this means that either p | (j − k) or p | a. Since gcd(p, a) = 1, we

cannot have p | a. Thus p | (j − k).
But 0 ≤ j, k < p tells us that −p+1 < j− k < p− 1 and the only multiple of p in this

range is 0. Therefore j = k, and this means that all of the elements in the above description

of Ma are distinct, so indeed #(Ma) = p. But we already know that Z/pZ itself has p

elements, which means Ma above is simply another way of describing Z/pZ.

For our next step, let’s multiply together all the nonzero elements of Ma, or of Z/pZ

since we know it’s the same thing:

a · 2a · · · · · (p− 1)a ≡ 1 · ·2 · · · · · (p− 1) (mod p) .

Rearranging these terms, we see

ap−1(p− 1)! ≡ (p− 1)! (mod p)

or p | (ap−1 − 1) (p− 1)!. Since p being prime means gcd(p, (p− 1)!) = 1, it follows by

Proposition 3.1.5 that p | ap−1 − 1. That is, ap−1 ≡ 1 (mod p), as desired. �

The above is quite similar to the proof that Euler gave of Fermat’s Little Theorem

(actually, Fermat gave no proof at all – not unlike his famous Last “Theorem”). A very

similar strategy can also prove his own theorem:

THEOREM 3.4.2. Euler’s Theorem, Redux Say a ∈ Z and n ∈ N satisfy gcd(a, n) = 1.

Then aφ(n) ≡ 1 (mod n).

52 3. PRIME NUMBERS

PROOF. Recall that the set (Z/nZ)∗ of (multiplicatively) invertible elements in Z/nZ

can be written as {[b1]n, . . . , [bφ(n)]n} where the numbers b1, . . . , bφ(n), satisfying 1 ≤ b1 <

· · · < bφ(n) < n, are all relatively prime to n.

We claim that we can also describe (Z/nZ)∗ as the set

M∗
a =

{
[b1a]n, . . . , [bφ(n)]n

}
.

Note first that since each bj is relatively prime to n, and so is a, it follows that bja is

relatively prime to n as well – the primes which divide bja divide either bj or a, and there

are no such primes which also divide n. Therefore M∗
a ⊆ (Z/nZ)∗.

Now notice that if [bja]n = [bka]n for 1 ≤ j, k ≤ φ(n) then n | (bj − bk)a. By Euclid’s

Lemma 2.1.6, since gcd(a, n) = 1, we must have n | (bj − bk).
However, since 1 ≤ b1 < · · · < bφ(n) < n, it follows that −n + 1 < bj − bk < n − 1,

and the only multiple of n in that range is 0. Thus bj = bk and we conclude that all

of the elements in the above description of M∗
a are distinct. Since there are φ(n) such

elements and M∗
a is a subset of (Z/nZ)∗, which has only φ(n) elements, it must be that

M∗
a = (Z/nZ)∗.

As in the previous proof, we conclude that the products of all the elements in M∗
a and

in (Z/nZ)∗ must be the same:

b1a · · · · · bφ(n)a ≡ b1 · · · · · bφ(n) (mod n) .

Regrouping terms again, we see

aφ(n)b1 · · · · · bφ(n) ≡ b1 · · · · · bφ(n) (mod n) .

Now the b’s are all invertible mod n, so we can multiply by the inverses, one by one, until

we are left with

aφ(n) ≡ 1 (mod n)

which finishes Euler’s Theorem. �

3.4. ANOTHER APPROACH TO FERMAT’S LITTLE AND EULER’S THEOREMS 53

Exercises for §3.4.

EXERCISE 3.4.1. Let n, a, and b1, . . . , bφ(n) be as in the proof of Euler’s Theorem.

Show that b1 · · · · · bφ(n) ≡ ±1 (mod n).

CHAPTER 4

Cryptology

Here are some Greek roots:

kryptos, κρυπτoς: secret, hidden

logos, λóγoς: word, study, speech

graph, γράϕω: write, written

From these (and others), English gets the words

cryptosystem: a set of algorithms for protecting secrets

cryptography: work done to make cryptosystems

cryptanalysis: work done to circumvent the protections of cryptosystems

cryptology: the union of cryptography and cryptanalysis,

often abbreviated simply to crypto.

Beware that cryptography is widely (but inappropriately!) used as a synecdoche for

cryptology. (This is not unlike the widely understood incorrect usage of the word hacker.)

We will try to use these words more carefully.

With that understood, we start with a little elementary cryptology in this chapter. There

will be very little number theory, but we will set up some terminology and simple examples

of cryptography and the corresponding cryptanalysis, with an emphasis on the old, historic,

systems which are no longer viable in the modern age. Later chapters will come around

quickly to modern, number theoretic techniques in crypto.

4.1. Some Speculative History

Perhaps there was a form of deception that preceded language – certainly many a house

pet has feigned innocence despite the clear evidence of involvement in stealing treats. And

even apiologists may not know if some lazy bees make up a story about a long excursion

to a new flower patch when their Queen demands an accounting.

But among homo sapiens, probably as soon as there was language, there was lying.

Of course, when two humans are face to face, both parties have some control, such as:

the listener can make an attempt to evaluate the trustworthiness of speaker, they can both

form their own judgements of the other’s identity and therefore choose what they wish to

share with each other, and the words of the speaker pass directly from their lips to the

55

56 4. CRYPTOLOGY

listener’s ears without the possibility of change of meaning in flight (absent considerations

of ambient noise and so on).

A great deal changed with the invention of writing more than 5000 years ago. Words

frozen in physical form, and the ideas they represent, can be taken and shared with a wide

range of parties other than those with whom the original author wanted to communicate.

In addition, if an author is not able to hand her work directly to the intended reader and

instead the written words are out in the world on their own for a while, then both intended

communicants can no longer be sure that the other is who the writing claims them to be nor

that the writing remains the unchanged symbols that the other party originally set down.

Let us formalize some of these issues of information security (as it is called now), in

the context of a message to be sent from someone named Alice to someone named Bob.

The role of the possibly disruptive and overly intrusive environment is played in our little

drama by Eve. (Traditionally one skips directly to a character whose name starts with E to

symbolize both the environment and also someone who is potentially an eavesdropper 1.)

Here is some basic terminology:

DEFINITION 4.1.1. Confidentiality means that only the intended recipient can extract

the content of the message – Alice wants only Bob to get her message and not Eve, no

matter if she listens on the eavesdrop or intercepts the message as it travels in some form

from Alice to Bob.

DEFINITION 4.1.2. Message integrity means that the recipient can be sure the message

was not altered – Bob wants to know that what he gets is what Alice wrote, not what the

mischievous Eve intended to change it into.

DEFINITION 4.1.3. Sender authentication means that the recipient can determine from

the message the identity of the sender – Bob wants to be sure this message did in fact

originate with Alice.

DEFINITION 4.1.4. Sender non-repudiation means that the sender should not be able

to deny sending that message – Bob wants to be able to hold Alice to her promises.

Note that Alice and Bob may actually be the same person sending a message from a

past self to their future self. For example, someone may want to keep records which must

be confidential and whose integrity must be reliable, even if there is a break-in to the site

keeping those records.

One of the earliest schemes attempting to achieve confidentiality was probably used

around the 7th century BCE in Greece by military commanders who wanted to get dis-

patches from far away soldiers, and to send them orders, in a way that even if the messenger

1Eavesdropper apparently comes from the Old English yfesdrype, meaning literally one who stands on

the eavesdrop [ground where water drips from the eaves of the roof] to listen to conversations inside a house.

4.1. SOME SPECULATIVE HISTORY 57

is captured, the message they carry will not be readable by the enemy. They used a device

called a scytale (the “c” is hard and the word rhymes with “Italy”), which was a cylindrical

stick – maybe a spear shaft – (σκυτάη means baton in ancient Greek), around which a long

strip of parchment was wrapped in a spiral. A message could then be written in parallel

rows along the length of the scytale, so that when the strip was unwound, the letters were

all jumbled and the message was unreadable.

FIGURE 4.1.1. A scytale in use.2

On the other end, assuming the receiver also has a scytale, when the strip is wound in a

spiral and read lengthwise, the message reappears, as if by magic.

Before we go on, a few more technical terms:

DEFINITION 4.1.5. The message that Alice wishes to send to Bob, in its actual original

(and final) form is called the plaintext.

DEFINITION 4.1.6. An algorithm that Alice uses to transform (obfuscate) the plaintext

into a form that will remain confidential even if observed by Eve while in flight is called a

cipher. We also say that Alice encrypts the (plaintext) message.

DEFINITION 4.1.7. After the message has been encrypted, it is called the ciphertext.

DEFINITION 4.1.8. When Bob receives the ciphertext, he applies another algorithm to

decrypt it and recover the plaintext.

2Image by DMGualtieri, CC-BY-SA-3.0 http://creativecommons.org/licenses/by-sa/3.0, via

Wikimedia Commons, downloaded fromhttps://commons.wikimedia.org/wiki/File%3AScytale.png

58 4. CRYPTOLOGY

Graphically:

Basic crypto terminology:

Alice on public network Bob

plaintext/cleartext

message m

encrypts m to c

transmits c ֌ ciphertext c ֌ receives c

decrypts c to

recover plaintext m

Suppose a spy sees scouts in the field wrapping strips of parchment around their spears

and writing down the length of the spear: meaning Eve learns the encryption algorithm.

Although the algorithm is known, confidentiality may be preserved:

DEFINITION 4.1.9. Additional information (some of which is) used in encryption and

(some of) which is necessary for successful decryption is called a key.

In the case of encryption with a scytale, the diameter of the scytale is the key. In fact,

there is some conjecture that the scytale was also a simple from of authentication: only

Alice had the matching scytale to the Bob’s, so if Bob could read any coherent sequence of

letters at all along his scytale, he knew Alice had sent it.

Even with a key, the vulnerabilities of this cryptosystem are fairly clear. And Athens

did lose the Peloponnesian War.

Many hundreds of years of cryptology have shown that in fact it is better to reveal the

algorithms of your cryptosystem to the public, and only to keep the key for a particularly

communication channel (between Alice and Bob, say) secret. There are many reasons for

this, the primary one probably being that the author of a cryptosystem can never be sure

they have thought of all the possible methods of cryptanalysis which will be used against

it. So the system’s author is better off letting the general crypto community do its best

against the system, and only the systems which have withstood such assault should be

used. After all, this is basic to the scientific method itself: scientists publish all the details

of their experiments, so others can try them as well and give independent verification or

find something to criticize.

This idea – that the security of a cryptosystem should be based on the secrecy of the key

but not of the algorithm – has come to be called Kerckhoff’s Principle, after a set of

cryptosystem design ideas written down in 1883 by a French military cryptography. It is

held in opposition to cryptosystems, thought of as very weak, which rely upon no one ever

finding out the algorithms: such systems rely instead on the ill-advised security through

obscurity paradigm.

4.1. SOME SPECULATIVE HISTORY 59

Exercises for §4.1.

EXERCISE 4.1.1. Suppose for some k ∈ N, the cleartext Alice wishes to send consists

of some symbols m1, . . . , mk. Assume that the scytale she uses has a diameter such that

s ∈ N letters can be written on each turn of the spiral of parchment, when it is wrapped

around the scytale.

Write one or more formulæ describing what the letters c1, . . . , ck of the ciphertext will

be. You should assume s < k and, if you like, that they have any particular useful relation-

ship such as s | k.

EXERCISE 4.1.2. Even if the scytale cryptosystem were strong, there may be problems

using it for authentication. Describe how authentication might fail depending upon the

message being sent – give an example or two of “bad” messages for authentication.

EXERCISE 4.1.3. The scytale cryptosystem seems weak. Describe how you would

cryptanalyze it.

60 4. CRYPTOLOGY

4.2. The Caesar Cipher and Its Variants

Another system which dates to ancient times was supposedly used by Julius Caesar.

DEFINITION 4.2.1. Alice takes her message, removes all spaces and punctuation, and

puts it all in one case (maybe upper case). Then she moves each letter k places down the

alphabet, wrapping around from Z to A if necessary, where k ∈ Z is a fixed number known

to both Alice and Bob but no one else, called the key.

To decrypt, Bob simply moves each letter k places earlier in the alphabet, wrapping

past A to Z if necessary: i.e. Bob encrypts the ciphertext with key −k to get the plaintext.

This is called the Caesar cryptosystem.

Apparently Julius Caesar usually used the key value k = 3. His nephew Octavian, who

later became the emperor Augustus, liked to use k = −1.

When using what is called the Latin alphabet (which is not what was used in ancient

Rome, though), with its 26 letters, there is one particularly nice key value: 13. The nice

thing about that value is encryption and decryption are exactly the same transformation. In

modern times, this transformation is called ROT13, and it has a small role in the modern

history of the Internet. In particular, posts on early chat rooms and bulletin boards would

sometimes want to have a bit of content that should not be automatically available to anyone

who looks at the post, but would be there for the determined reader (such as, for example,

a spoiler in a review of some popular new game, book, or film). These were often included

in the post, but only after they had been run through ROT13.

A few commercial products used ROT13 for actual security, despite it actually being

completely insecure, such as certain parts of some versions of the Windows operating sys-

tem.

The Caesar ciphers were completely broken (in a number of ways; see §4.3, below) be-

fore 1000CE, but a descendent was developed in the late Middle Ages and was considered

the state of the cryptological art through the early modern period.

DEFINITION 4.2.2. Once again, Alice takes her message, removes all spaces and punc-

tuation, and puts it all in one case (maybe upper case). This time, the key ~k = (k1, . . . , kℓ)

which Alice and Bob share is an ℓ-tuple, for ℓ ∈ N, of integers k1, . . . , kℓ ∈ Z.

To encrypt, Alice steps through her plaintext message and key sequence both one letter

at a time, moving each plaintext letter forward (wrapping from A to Z if necessary) by

the number of letters specified by the corresponding key number. If she runs out of key

numbers, she simply starts again at the beginning of the key sequence.

To decrypt, Bob simply moves each letter k places earlier in the alphabet, wrapping

past A to Z if necessary: i.e. to decrypt, Bob encrypts with key −~k = (−k1, . . . ,−kℓ).
This is called the Vigenère cryptosystem.

4.2. THE CAESAR CIPHER AND ITS VARIANTS 61

Traditionally, the key in Vigenère is a written down, memorized, and shared between

Alice and Bob in the form of a word. Then when encrypting or decrypting, the letters of

the keyword are “added” to the message letters, as described above, under the convention

that A = 1, B = 2, etc..

Notice that Vigenère with key length ℓ is essentially ℓ Caesars in parallel – in fact,

if ℓ = 1, they are exactly the same cryptosystem. It therefore turns out that Vigenère is

essentially ℓ + 1 times harder to crack than Caesar, the “ + 1” coming from the fact that

Eve doesn’t even know ℓ. Nevertheless, after a couple of hundred years in which it was

considered unbreakable and used as the principle diplomatic cipher in the courts of Europe,

approaches to breaking Vigenère were developed.

As one final variant of the Vigenère cipher, suppose we go in the opposite direction

from the ℓ = 1 extreme, and instead take ℓ as long as possible.

DEFINITION 4.2.3. A one-time pad is a Vigenère cryptosystem in which the key is

as long as the message, chosen randomly, and never re-used. [The key is also called the

one-time pad in this cryptosystem3.]

(A one-time pad is sometimes called – inappropriately, given the true intellectual his-

tory of the cryptosystem – a Vernam Cipher .)

It is important to have a good key sequence in a one-time pad cryptosystem. The good

news is that one can prove that with a truly random one-time pad, the resulting cryptosys-

tem is in fact perfectly secure. In computer science, this is called information theoretically

secure , because the proof of security does not rely upon any assumptions about the com-

putational resources available to the attacker. [See [Sha49] and [Sha48] for this proof.]

Other cryptosystems we shall meet below are only secure if we assume the attacker has

access to a computer of a particular type (a probabilistic polynomial-time Turing machine

is the usual assumption; this is the subject within computer science called computational

complexity, see, e.g., [AB09]).

It is also important never to use the same pad more than once. If so, an attacker can

take the letter-by-letter difference of the two ciphertexts and this will completely remove

the pad from the calculation. In fact, at that point the message can usually be determined

quickly.

In modern times, after the advent of digital communications networks, messages are

written as computer data, so everything is stored (and transmitted) as bits, meaning 1s and

0s. With bits, when we do the equivalent of what was described above as shifting a letter

along the alphabet, wrapping from Z to A if necessary, we are either doing nothing, if the

shift is by an even amount, or simply switching 0 and 1 otherwise.

3Another synecdoche!

62 4. CRYPTOLOGY

Another way of saying that is to say that is that if the message and the key are both

written all out in bits – think of them as the elements [0], [1] ∈ Z/2Z – then the encryption

consists exactly of adding the corresponding bits mod 2. A good one-time pad is therefore

a very random, and very long, string of bits (congruence classes in Z/2Z).

The big problem with one-time pads is key distribution: Alice and Bob must share very

large one-time pads before they ever start to communicate, large enough to have as many

letters (or bits, in the computer age) as all of their future messages.

This does suggest an interesting approach to cryptography: find a way that Alice and

Bob can share a small secret out of which they can generate arbitrarily long sequences of

bits, both getting the same sequence, which seem to any attacker to be entirely random.

If this were possible, they would use these pseudorandom sequences (called this because

they are not actually random – after all, they can be determined in advance by both Alice

and Bob using their small starting secret – they only appear so to all attackers) as one-time

pads. [See [Lub96] for more about pseudorandomness.]

4.2. THE CAESAR CIPHER AND ITS VARIANTS 63

Exercises for §4.2.

EXERCISE 4.2.1. ROT13 was supposedly nice because it reduced the amount of coding

which needed to be done: the same program would decrypt as the one which encrypts, since

doing ROT13 a second time undoes the first ROT13’s transformation.

Is this true for other keyed Caesar ciphers? Make a conjecture about whether, given a

Caesar cipher key k ∈ Z and a message m, there always exists an n ∈ N such that

n times
︷ ︸︸ ︷

eCk ◦ · · · ◦ eCk (m) = m

where eCk is the function which does the Caesar encryption with key k. If so, find an

expression for the smallest such n, which depends (if necessary) on k, m, and the size of

the alphabet in which m is written.

EXERCISE 4.2.2. Continuing the previous exercise: Suppose now ~k = (k1, . . . , kℓ) is

an ℓ-tuple, for ℓ ∈ N, of integers k1, . . . , kℓ ∈ Z and eV~k is the Vigenère encryption function

with key ~k. Find if for all messages m, there exists an n ∈ N such that

n times
︷ ︸︸ ︷

eV~k ◦ · · · ◦ e
V
~k
(m) = m

and, if so, find an expression for the smallest such n, which depends (if necessary) on ~k,

m, and the size of the alphabet in which m is written.

EXERCISE 4.2.3. Suppose Eve has a twin Vev, and they are both looking at an inter-

cepted ciphertext c sent by Alice to Bob. They think that those crazy lovebirds Alice and

Bob have used a one-time pad to encrypt their communications, but Eve and Vev both do

lots of calculations and think they have managed to correctly decrypt c. Unfortunately, they

have different (non-gibberish!) values me and mv which Eve and Vev, respectively, think

were the plaintext that Alice meant to send to Bob.

What must have been the one-time pads pe and pv which they were somehow calculating

(or guessing) that Alice used for their respective encryptions?

Could they have come up with arbitrary proposed decryptions me and mv, or is there

some relationship between the proposed decryptions, the proposed pads pe and pv, the true

plaintext, and Alice’s actual one-time pad?

Work out a particular, concrete example: if Alice’s original cleartext message m was

aardvark, would it be possible for Eve to think the message was me = iloveyou

while Vev thinks it is mv = ihateyou? If so, give an example of what would be the

corresponding ciphertext c, Alice and Bob’s one-time pad pAB, the proposed decrypts me

and mv, and the proposed one-time pads pe and pv.

64 4. CRYPTOLOGY

4.3. First Steps into Cryptanalysis: Frequency Analysis

The Caesar cipher seems very weak. But looking at a ciphertext, such as

wrehruqrwwrehwkdwlvwkhtxhvwlrq

zkhwkhuwlvqreohulqwkhplqgwrvxiihu

wkhvolqjvdqgduurzvrirxwudjhrxviruwxqh

ruwrwdnhdupvdjdlqvwdvhdriwurxeohv

dqgebrssrvlqjhqgwkhp

it is hard to know where to start – this hardly seems to be English at all.

Perhaps we should start with the Caesar cipher itself, assuming (anachronistically) that

Caesar was following Kerckhoff’s Principle, or that (more chronistically) spies had deter-

mined the cryptosystem but not the key.

One thing we notice right away is that what we do not know, that key, is such a small

thing to be giving us such trouble. In fact, if we tried a random choice of key, nearly four

times out of 100 (using the modern “Latin alphabet” of 26 letters – in Caesar’s time, the

actual Latin alphabet had only 23, so even better!) would, purely by dumb luck, give us a

correct decryption. Formally, we are talking about

DEFINITION 4.3.1. The set of all valid keys for some cryptosystem is called its keyspace.

EXAMPLE 4.3.2. The keyspace of the Caesar cipher cryptosystem is the alphabet.

EXAMPLE 4.3.3. The keyspace of the Vigenère cipher cryptosystem with a key length

of ℓ is all sequences of ℓ letters in the alphabet; therefore, it hasN ℓ elements, if the alphabet

is of size N . If the precise key length is not known, but it is known to be less than or equal

to some bound L ∈ N, then there are
∑L

j=1N
j possible keys.

EXAMPLE 4.3.4. Any sequence of letters of length M is a possible key (pad) for a one-

time pad encryption of a message of length M . Therefore there are NM possible one-time

pads for a message of length M over an alphabet of size N .

We computed the sizes of these various keyspaces because one thing that seemed weak

about the Caesar cipher was how small was its keyspace. In fact, a better strategy than

simply guessing at random would be to try all possible keys – there are only 26 (or 23

in Julius’s time)! – and see which one gives the correct decryption. Such an approach

is called a brute-force attack [or exhaustive search]. Even in Caesar’s time, the Caesar

cipher keyspace is so small that Eve could check all possible keys and see which yielded

the cleartext of a message from Alice to Bob.

Things are a little more difficult for the Vigenère cipher. For example, there are nearly

12 million keys to try if the key length is known to be five. Before the computer age, this

would have been completely intractable. Even in the 21st century, where it would be nearly

instantaneous to human eyes for a computer to generate all of those possible decryption,

4.3. FIRST STEPS INTO CRYPTANALYSIS: FREQUENCY ANALYSIS 65

there is a problem: those human eyes would have to look over the 12 million possibilities

and pick out which was the valid decryption.

Amazon’s Mechanical Turk (see https://www.mturk.com/mturk/welcome)

might be able to marshal enough human eyes to solve a single brute force Vigenère de-

cryption. But a better approach would be to write a computer program that can distinguish

gibberish from a real message Alice might have sent to Bob – then, in a matter of moments,

a brute force attack would succeed.

If we are to distinguish gibberish from a real message, we need to know what possible

real messages are. This motivates the following

DEFINITION 4.3.5. The set of possible messages for an encrypted communication is

called the message space.

Without some structure for the message space, cryptanalysis can become nearly impos-

sible. For example, if Alice is e-mailing an encrypted version the combination of a safe to

Bob, the message space is not too large but has no identifiable features: a brute force attack

would have no way of telling which potential decryption was the actual combination.

But suppose we assume that the message space of Alice and Bob’s communication is a

set of short (or long, which would be better) English texts. There is quite a bit of structure

in English texts – we human speakers of English certainly recognize valid English. The

question is whether we can automate the process of detection of valid English texts.

Looking back at the example Caesar encryption given at the beginning of this section,

we noticed that it did not look like English – but in what way? One thing was, of course,

that it does not have any English words in it. Someone who knows English knows most of

the words of that language and can recognize that this text has none of them, except maybe

“up” and “i” (several times).

This suggests an approach: take a list of all words in English, with all variant and

derivative forms, add in some possible short random sequences that may have been included

in otherwise standard English (where Alice was quoting some nonsense she’d heard, or was

writing down a graffito she saw on the side of a subway car, etc.), and compare them to

possible decryptions of the ciphertext. This scheme is not very practical. But if the message

space were small enough, something like this would be reasonable.

Looking back at the message again, another thing that immediately strikes the eye of a

reader of English is that it does not seem to have the right letters, or the right combinations

of letters. For example, there do not seem to be enough vowels. Looking at how often

letters occur in a text compared to what we expect is called frequency analysis. Its use in

cryptanalysis was apparently first described by the Muslim philosopher and mathematician

al-Kindi4 in his 9th century work Manuscript on Deciphering Cryptographic Messages.

4Al-Kindi is a very interesting figure from early Muslim intellectual history: e.g., he seems to have

brought Hindu numbers, with their place-value notation, into the Muslim world.

66 4. CRYPTOLOGY

Here is a table of the frequencies of the letters in a bit of standard English (some of the

plays of Shakespeare):

FIGURE 4.3.1. Frequency counts of letters in several Shakespeare plays

Notice that the letter ‘e’ is the most common, by a bit. So a first cryptanalytic approach

using frequency analysis would simply be to use the Caesar decryption key which moved

the most frequent letter in the ciphertext to be ‘e’. With the ciphertext at the beginning of

this section, that would yield the decryption:

ezmpzcyzeezmpesletdespbfpdetzy

hspespcetdyzmwpctyespxtyoezdfqqpc

espdwtyrdlyolcczhdzqzfeclrpzfdqzcefyp

zcezelvplcxdlrltydeldplzqeczfmwpd

lyomjzaazdtyrpyoespx

Not so good. Apparently looking only at the most frequent letter is insufficient: the most

frequent letter in the plaintext of this message was not ’e’.

Instead let us look at the entire frequency table for this ciphertext.

4.3. FIRST STEPS INTO CRYPTANALYSIS: FREQUENCY ANALYSIS 67

FIGURE 4.3.2. Letter frequencies in a sample Caesar ciphertext

Unfortunately, this is not exactly the standard (Shakespearean) English frequency dis-

tribution, nor is it even a shifted (with wrapping past 25 back to 0) version of Shakespeare’s

distribution. But perhaps one of its shifts is fairly close to Shakespeare.

This suggest the following more refined cryptanalytic approach: try all possible decryp-

tions (which is not so bad for the Caesar cipher, because of its small keyspace) and choose

the one whose entire letter frequency table is closest to the standard English letter frequency

table – so, not looking only at the most frequent letter, but looking at the whole frequency

distribution; and not looking for exact match, but merely for the best approximate match.

Which brings up the question of what is the best way to measure the distance between

two distributions. One commonly used approach is to measure the

DEFINITION 4.3.6. The total square error is a distance between two distributions f

and g given by

d(f, g) =
25∑

j=0

(f(j)− g(j))2

where we are always working with our distributions defined on the letters in the form ‘a’=0,

‘b’=1, etc.).

Minimizing this distance is equivalent to least squares in statistics or linear algebra.

Following this strategy with the ciphertext from the beginning of this section, we get

the following

68 4. CRYPTOLOGY

FIGURE 4.3.3. Square errors with all decryption keys for example Caesar ciphertext

The minimal square error will then come from decryption key 23 (corresponding to

an original encryption key of 3; this was done by Julius himself, anachronistically). The

corresponding cleartext then would have been

tobeornottobethatisthequestion

whethertisnoblerinthemindtosuffer

theslingsandarrowsofoutrageousfortune

ortotakearmsagainstaseaoftroubles

andbyopposingendthem

which looks pretty good.

Interestingly, this approach to non-gibberish detection is fairly robust, even with quite

short texts which might be expected to have frequency distributions rather far away from

the English standard. For example, with ciphertext

rkkrtbrkeffespkyvtifjjifruj

we have

4.3. FIRST STEPS INTO CRYPTANALYSIS: FREQUENCY ANALYSIS 69

FIGURE 4.3.4. Square errors with all decryption keys for Caesar ciphertext

rkkrtbrkeffespkyvtifjjifruj

from which we conclude that the decryption key is 9, corresponding to an encryption key

of 17. Thus the cleartext must have been

attackatnoonbythecrossroads

which seems like the kind of thing Julius might have said.

So much for cryptanalysis of the Caesar cipher. Moving on to Vigenère, the first prob-

lem we face is finding out the key length. Because if we knew that key length ℓ, we would

divide the ciphertext into ℓ shorter texts consisting of every ℓth character starting with the

first, then with the second, etc., up to starting with the ℓth. Applying the automatic Caesar

cracker described above, we would have the ℓ digits of the key and thus the plaintext.

To make things easier, suppose we take all of Hamlet and encrypt it with Vigenère

using the keyword hippopotomonstrosesquipedaliophobia, corresponding to

numerical key

k = (7, 8, 15, 15, 14, 15, 14, 19, 14, 12, 14, 13, 18, 19, 17, 14,

18, 4, 18, 16, 20, 8, 15, 4, 3, 0, 11, 8, 14, 15, 7, 14, 1, 8, 0)

For example, the part of the ciphertext corresponding to the quote used above in Caesar

cracking would be

70 4. CRYPTOLOGY

hdxajnioomjvdtfvstrqitmfozlxjj

kcmiosgpenjjbgxmcmtfzltmaudofpmwg

odsntxuuhwjywmrjpnieosoqlfbpjoqyyljia

cmbdaozawminabtdhrtyndlncugkflswh

vjrwgdwddoeicznymcyl

If Eve was hoping this was only Caesar-encrypted, so the Vigenère key length was ℓ = 1,

she would have the following letter frequencies:

FIGURE 4.3.5. Letter frequencies in the Vigenère encryption of Hamlet

using key hippopotomonstrosesquipedaliophobia

Notice that compared to Figure 4.3.2, the values show much less variation – in fact, there

are no zero values and no values which are much larger than all others. The reason is that

this distribution is the average of 16 different shifts, coming from the 16 different letters in

the keyword hippopotomonstrosesquipedaliophobia, of the standard English

distribution Figure 4.3.1. This averaging smooths out all of the characteristic shape of the

distribution useful in identifying when its decrypting shift is correct.

Nevertheless, the Caesar cracker will give some key value for each one of the choices

Eve makes for a possible value of ℓ – there will always be a value of the shift for each letter

which minimizes the square error. The minimum will not be very small, though, because

the frequency distribution for the letters chosen as all locations in the ciphertext congruent

to k (mod ℓ) for any k ∈ N and k ≤ ℓ, where ℓ is less than the true key size, will be quite

flat and therefore far away (in the square error distance) from the distribution of standard

English.

4.3. FIRST STEPS INTO CRYPTANALYSIS: FREQUENCY ANALYSIS 71

For example, with the encrypted Hamlet we have been examining, if Eve guesses that

ℓ = 5 and looks at every letter in a location congruent to 1 (mod 5), the Caesar cracker

will have the following graph of square error:

FIGURE 4.3.6. Square errors with all decryption keys for letters at lo-

cations congruent to 1 (mod 5) in Hamlet Vigenère encrypted with key

hippopotomonstrosesquipedaliophobia

The minimum is clearly at a decryption key of 23, but it is not significantly less than

other possibilities – and all the errors are around ten times higher than we saw in earlier

such graphs such as Figure 4.3.3.

So here is the Vigenère cryptanalytic approach: Try all key lengths ℓ up to some bound

L (determined by how much computer time is available, and not so large that taking every

ℓth letter of the ciphertext results in too few letters to do reasonable frequency analysis). For

each of the ℓ substrings consisting of every ℓth letter starting at locations 1, . . . , ℓ, apply the

Caesar cracker. This will result in an optimal Vigenère key ~kℓ = (kℓ,1, . . . , kℓ,ℓ) of length ℓ.

Then for each such ~kℓ in the range 1, . . . , L, compute the square error distance dℓ between

the ciphertext decrypted with ~kℓ and the standard English letter distribution. Report ℓ and

~kℓ as the Vigenère keylength and key if dℓ is the smallest square error computed.

72 4. CRYPTOLOGY

Exercises for §4.3.

EXERCISE 4.3.1. Can you think of any Caesar ciphertexts which would have two de-

cryptions that would both seem like valid English during an brute-force attack? If so, give

precise examples, with decryption keys.

EXERCISE 4.3.2. Would it be harder or easier to do the previous exercise (4.3.1) for

the Vigenère cipher? Give reasoning and examples.

EXERCISE 4.3.3. It seems like more encryption would be better, in terms of designing

a secure cryptosystem – so how about encrypting a cleartext using one cryptosystem, then

re-encrypting the resulting ciphertext to make a super-ciphertext?

We have two cryptosystems so far with short keys (we also have the one-time pad,

but it is already perfectly secure and has big keys, those pads, so we will not consider it):

Caesar and Vigenère. Suppose I make a new cryptosystem which does some combination

of Caesar and Vigenère encryptions, one after the other, all with different keys. Will this

result in a substantially more secure cryptosystem? Why or why not?

4.4. PUBLIC-KEY CRYPTO: THE RSA CRYPTOSYSTEM 73

4.4. Public-Key Crypto: the RSA Cryptosystem

Suppose Alice and Bob never had a chance to meet in person, and they nevertheless

want to exchange messages which will be secret from Eve. What can they do?

This seems impossible within the context of cryptosystems we have been discussing so

far. Let us tease out the crucial part that makes this so difficult

DEFINITION 4.4.1. A symmetric cipher (or symmetric cryptosystem) consists of the

following parts, all known to both the communicating parties and the public in general:

• a message spaceM
• a keyspace K
• an encryption algorithm which creates a ciphertext c = ek(m) for any choice of

k ∈ K and m ∈M.

• a decryption algorithm which generates a message dk(c) ∈ M given a ciphertext

c and a k ∈ K, which satisfies dk(ek(m)) = m ∀k ∈ K, m ∈M.

Alice and Bob can use such a symmetric cipher by agreeing in private upon a key k ∈ K
they will use for both encryption and decryption. For this reason, symmetric cryptosystems

are also called private key cryptosystems.

Graphically:

Basic private key crypto set-up and notation:

private communication

Alice ←→ of shared key k ∈ K ←→ Bob

on public network

message mA ∈M
compute cA = ek(mA)

transmit cA ֌ ciphertext cA ֌ receive cA
compute mA = dk(cA)

message mB ∈M
compute cB = ek(mB)

receive cB ֋ ciphertext cB ֋ transmit cB
compute mB = dk(cB)

etc....

It is important for the security of the above cryptosystem that the keyspace K either

be quite large, or that the whole system be structured in such a way that it is hard to tell

if a particular possible decryption is valid or not (or both). Otherwise Eve can perform

the brute-force attack of simply trying all the possible keys k ∈ K and seeing which dk(c)

makes sense as the decryption.

74 4. CRYPTOLOGY

In any case, because of the initial private key exchange, symmetric cryptosystems are

not appropriate for the kind of situation we proposed at the start of this section. Instead,

one would need a different kind of cryptosystem:

DEFINITION 4.4.2. An asymmetric cipher (or asymmetric cryptosystem) consists of

the following parts, all known to any interested party, licit or il-:

• a message spaceM
• an encryption keyspace Ke

• a decryption keyspace Kd

• a way of associating encryption keys to decryption keys, by a one-to-one function

E : Kd → Ke

• an encryption algorithm which creates a ciphertext c = eke(m) for any choice of

ke ∈ Ke and m ∈M.

• a decryption algorithm which generates a message dkd(c) ∈M given a ciphertext

c and a kd ∈ Kd, which satisfies dkd(eE(kd)(m)) = m ∀kd ∈ Kd, m ∈ M.

To use such a cryptosystem, Bob picks a decryption key kd, without telling it to anyone –

but he makes the corresponding encryption key ke = E(kd) publicly available (probably on

his website). For this reason, ke is also called his public key and kd his private key, while

the whole system is called a public-key cryptosystem. .

Graphically:

Basic public key crypto set-up and notation:

Alice on public network Bob

pick kd ∈ Kd

compute ke = E(kd) ∈ Ke

download ke ֋ public key ke ֋ publish ke

message m ∈M
compute c = eke(m)

transmit c ֌ ciphertext c ֌ receive c

compute m = dkd(c)

As before, the security of this cryptosystem against brute-force attacks relies upon the

size of Kd. In addition, since the encryption key and algorithm are known to Eve, it is

important that the message spaceM not be too small. IfM were small, Eve could simply

compute all encryptions eke(m) as m ran overM, and compare them to a ciphertext c she

intercepted.

There is a way to prevent this attack on the message space, by making it artificially

larger. In fact, one usually adds some

4.4. PUBLIC-KEY CRYPTO: THE RSA CRYPTOSYSTEM 75

DEFINITION 4.4.3. Cryptographic salt is random data added to a message Alice de-

sires to send to Bob before she encrypts it, which is automatically removed at Bob’s end.

Once Alice salts her messages, Eve must search the entire space of messages together with

salt, which can be much larger thanM.

As an added benefit, salting messages makes the ciphertext change with each secret

transmission – even if the plaintext is the same. Therefore even though Eve will of course

know there is communication going on between Alice and Bob, her traffic analysis will no

longer even be able to track when the same message is being sent on separate occasions.

Absent this salt, a meticulous Eve might be able to correlate the message ciphertext with

actions in the real world, and thus effectively learn their decryption even without cracking

the cryptosystem. With salt, this is impossible.

Since Bob’s encryption key ke = D(kd) is public, the entire security of this cryptosys-

tem falls apart if Eve can figure out the inverse of the function E : Kd → Ke. On the other

hand, Bob must have been able to compute E itself, at least during the set-up phase of the

cryptosystem. There is a name for this kind of function

DEFINITION 4.4.4. A function f : A → B which is one-to-one and which can be

computed in a reasonable amount of time on a standard (classical) computer but whose

inverse cannot feasibly be computed is called a [cryptographic] one-way function.

Multiplying two numbers, even very large numbers, can be done quite quickly on a

computer. It is even surprisingly fast to tell if very large numbers are prime or composite

(see [AKS04] for this amazing recent result in the long history of primality testing).

But no one has found a way to factor large numbers, even when they are known to be

composite, in a reasonable amount of time.5 For example, one of the largest ever to be fac-

tored, a famous challenge problem known as RSA-768, consisting of a 232-digit (768 bit)

composite number, was finally factored in 2009 after a network of hundreds of computers

working together (although not exclusively on this problem) had been processing for about

two years. Larger composite numbers are easy to make and astronomically harder to factor.

Therefore, the function which multiplies two large primes together to get a very large

composite is a good candidate for a cryptographic one-way function.

In 1978, Ron Rivest, Adi Shamir and Leonard Adleman described ([RSA78]) the fol-

lowing public-key cryptosystem based on this one-way function:

DEFINITION 4.4.5. Bob starts by picking two very large primes p and q. Their prod-

uct n = pq is known as the corresponding RSA modulus. Bob also picks a number

e, typically a number which when written in base two has very few 1’s, such as 3 or

5On a classical computer – there is an efficient algorithm known for factoring on a quantum computer,

see [Sho94] and [NC10].

76 4. CRYPTOLOGY

65537 = 100000000000000012, which satisfies gcd(e, φ(n)) = 1. This number is called

the RSA exponent.

The RSA public [encryption] key ke consists of the pair (n, e); the set of possible such

pairs is Ke.

The RSA private [decryption] key kd consists of the pair (n, d), where

d = e−1 (mod φ(n)),

and Kd is the set of such pairs.

The association of encryption to decryption keys is by E : (n, e) 7→ (n, e−1 (mod φ(n))).

The message space of this cryptosystem isM = {m ∈ Z | 0 ≤ m < n}.
Encryption is by

c = e(n,e)(m) = me (mod n) .

Decryption is

d(n,d)(c) = cd (mod n) .

All together, the above is called the RSA cryptosystem.

Graphically:

RSA cryptosystem set-up and notation:

Alice on public network Bob

pick large primes p and q

compute RSA modulus n = pq

pick RSA exponent e ∈ N

with gcd(e, φ(n))

download ke ֋ public key ke ֋ publish ke = (n, e)

compute d = e−1 (mod φ(n))

message m ∈M
compute c = e(n,e)(m)

= me (mod n)

transmit c ֌ ciphertext c ֌ receive c

compute m = d(n,d)(c)

= cd (mod n)

The first thing we need to see is that this satisfies the basic condition to be a functioning

cryptosystem:

PROPOSITION 4.4.6. Let notation be as in the above definition of the RSA cryptosystem.

Then for any message m ∈M, d(n,d)(e(n,e)(m)) = m.

PROOF. Any m ∈ M represents a class in Z/nZ, and we will blur the distinction

between the class and its representative m satisfying 0 ≤ m < n.

4.4. PUBLIC-KEY CRYPTO: THE RSA CRYPTOSYSTEM 77

We have built d as d = e−1 (mod φ(n)). This means e ·d ≡ 1 (mod φ(n)), so ∃k ∈ Z

such that e · d = 1 + kφ(n).

Then by Euler’s Theorem 3.3.4, ∀m ∈M such that gcd(m,n) = 1

d(n,d)(e(n,e)(m)) ≡ (me)d = med = m1+kφ(n) ≡ m · (mφ(n))k ≡ m · (1)k ≡ m (mod n)

as desired. The case where gcd(m,n) 6= 1 is Exercise 4.4.1 in this section. �

Beyond basic functionality, we need to see how practical RSA is. So let us go through

it carefully, picking out the algorithms needed at each step.

(1) Bob must choose the large primes p and q. As we have said, there are algorithms

which can tell if a number is prime in a reasonable amount of time. More precisely,

this means that a (classical) computer can determine if a number k is prime in an

amount of time which is less than a polynomial function of log(k). [That’s the

usual meaning of feasible computation in cryptology.]

(2) Furthermore, there are enough primes that Eve will not be able to do a brute force

search through all the possibilities. We can tell this because The Prime Number

Theorem tells us the (asymptotic) number of primes:

THEOREM 4.4.7. Given x ∈ R, x > 0, let π(x) = #{p ∈ N|p ≤ n} be the

prime counting function. Then

lim
x→∞

π(x)

x/ ln(x)
= 1.

This theorem is one of the gems of analytic number theory. It was proven in 1896

by Jacques Hadamard and Charles Jean de la Vallée-Poussin, although important

pieces were known before then by people like Euler, Legendre, and Riemann. The

proof is hard, even an elementary one from 1948 by Atle Selberg and Paul Erdös.

One consequence of the Prime Number Theorem is that the probability that

a randomly chosen number k is prime is approximately 1/ln(k). For example,

looking for a prime with 200 digits, we pick a random number of that size, and

then we will have to test on the order of ln(10200) = 461 numbers before we have

a prime. This is not an unreasonable amount of computation.

(3) Having an RSA modulus n = pq, we can compute the Euler totient function

φ(n) = (p− 1)(q − 1) nearly instantly by Theorem 2.5.3.

(4) Finding the RSA exponent e which is relatively prime to φ(n) is not hard, since

there are many such – in fact, in a real sense, the probability that two randomly

chosen numbers are relatively prime is 6
π2 (for a precise statement of this, and its

proof, see [HW79]). Testing candidates for e is also efficient because, as we shall

see below in Exercise 4.4.3, the Euclidean Algorithm takes an amount of time

which is less than a polynomial function of the log’s of the numbers involved – it

is feasible.

78 4. CRYPTOLOGY

(5) Next, computing d = e−1 (mod φ(n)) is very fast using the Extended Euclidean

Algorithm (Theorem 1.6.2) which is certainly slower than the basic Euclidean

Algorithm, but is still feasible.

(6) RSA encryption and decryption both consist of raising a number to a power in

(mod n). Fortunately, there is an algorithm called fast modular exponentiation

which again does this in an amount of time less than a polynomial function of the

log’s of the given numbers.

(7) One last practical point is how Alice actually uses RSA to send the message she

wants, and not merely a number m ∈ Z such that 0 ≤ m < n.

This is a standard problem in mathematical cryptography and has standard

solutions. Typically, Alice must take her message, character by character, and

transcribe it into a sequence of numbers using some accepted standard. This has

been done since 1960 using the ASCII code [American Standard Code for Infor-

mation Interchange], which gives 7 bit binary numbers for the 26 letters of the

(modern) Latin alphabet, both upper and lower case, as well as for a set of com-

monly found symbols and a few modern additions, usually no-printing, such as

111102 Record Separator, 1112 Bell, 10112 Vertical Tab, etc. These ASCII codes

are today always stored in one byte (8 bits), padded with a leading 0 bit.

Actually, as the World Wide Web has become a global phenomenon, there

has been an increasing need for more alphabets and even writing systems (like

Chinese) which do not use alphabets. This has resulted in a system called Unicode

which as, in version 6.3 as of 2013, more than 110,000 characters. Unicode is

stored in a variety encodings, of which the most common are UTF-8 and UTF-

16, which use between two and four bytes to store each character.

What Alice typically does, then, is to write out her message in either ASCII or

Unicode, simply attach all the bytes in sequence, and then cut the entire message

into blocks of b bits. Here b ∈ N is chosen to be the largest value such that 2b < n,

so that those blocks of b bits can be thought of as representing an integer m ∈ Z

such that 0 ≤ m < n, so RSA can now be used on the message, a block at a time.

(We are glossing over many details here, such as how to leave space for some

salt, other approaches and issues in the structure of the blocks, etc. See any stan-

dard reference on cryptography, such as [FS03] or [MVOV96].)

4.4. PUBLIC-KEY CRYPTO: THE RSA CRYPTOSYSTEM 79

Exercises for §4.4.

EXERCISE 4.4.1. In this problem, you will finish the proof of Proposition 4.4.6, which

states that RSA decryption functions correctly in all cases.

As a first step, formally state and prove a lemma that for distinct primes p and q, two

integers r and s are congruent mod pq if and only if they are congruent mod p and mod q.

[Hint: the Chinese Remainder Theorem.]

Now, using the above, prove the missing case of Proposition 4.4.6: Given distinct

primes p and q, define n = pq. Let e ∈ N satisfy gcd(e, φ(n)) = 1 and d ∈ N be an

inverse of e mod φ(n). Then, for any m ∈ Z such that 0 ≤ m < n and gcd(m,n) 6= 1, we

have med ≡ m (mod n).

EXERCISE 4.4.2. How much computation is required to compute ak (mod n) for a ∈
Z and k, n ∈ N with n ≥ 2?

Multiplying two numbers a, b ∈ Z is a basic instruction in most modern computers: it

can be thought of as taking one unit of time. (Or you can do a number of smaller manip-

ulations which is approximately a polynomial function of the number of digits in a and b;

it will make no difference for the rest of this problem.) Similarly, division with remainder

is either a single machine instruction (e.g. on a processor in the Pentium family) or can be

done by elementary school methods in time approximated by a polynomial function of the

sizes of the inputs.

Let us then describe the work to do a multiplication followed by reducing (mod n)

as being bounded by a polynomial function p(d), where d is the number of digits in the

operands.

If we then simply multiply a by itself k times, reducing (mod n) each time, the time

to do this will be approximately kp(d) = c1e
c2dp(d), for some constants c1, c2 ∈ R – it will

increase exponentially.

See if you can come up with a much fast exponentiation algorithm, polynomial rather

than exponential.

[Hints: (1) Make a table of successive squares of a in (mod n), being a2, a4, a6, etc.

(2) write out k in base two, and expand ak using this binary version of k, the usual rules for

exponentiation, and the table. End up with a description of how to compute ak (mod n),

and check carefully how much time it would take to do your computation.]

EXERCISE 4.4.3. For k ∈ N, play the following game:

(1) use the division algorithm on k for division by two, getting quotient q and remain-

der r;

(2) replace k ← q;

(3) if k > 0, repeat from step (1); otherwise, terminate.

80 4. CRYPTOLOGY

Give a bound on how many steps does it take for this game to finish – answer in terms of a

function of k, or a function of the number of bits required to write k down in base two, or

a function of the number of digits require to write k in base 10.

Show that for every two steps of the Euclidean Algorithm, the remainder terms ri de-

crease by a least a faction of 1/2. In other words, if we use the notation of Theorem 1.6.2

then rj+2 <
1
2
rj for all j ∈ Z satisfying j ≥ 0.

Explain how this means the Euclidean Algorithm requires at most log2(b) steps to com-

pute gcd(a, b) and it therefore requires at most seven times the number of digits of b. [Hint:

what is log2(10)?]

Explain how this means that the Euclidean Algorithm is a cryptologically feasible com-

putation, in the sense of this section.

4.5. DIGITAL SIGNATURES 81

4.5. Digital Signatures

Public-key cryptosystems allow several use-cases which symmetric cryptosystems do

not. One which has come to have more and more importance in the modern digital economy

is the creation of digital signatures – these are parts of electronic documents which are

supposed to have something of the qualities of a physical signature in that are hard for an

imposter to forge. Such a signed document might be needed, for example, if Bob from

the last section (whose RSA public key is on his website) wished to send a legally binding

contract via e-mail. Perhaps Alice and Bob wish to e-mail to their future landlord Larry a

signed lease for an apartment that they will share. When Larry gets an e-mail from Bob

saying “I agree to be bound by the terms of this lease,” Larry needs to have confidence that

this e-mail did originate from Bob, which he can if there is a digital signature.

Here’s what Bob can do: he takes a copy of the lease, adds a section at the end stating

his agreement to its terms and giving some personally identifying information (perhaps

a scan of his driver’s license). Call this whole chunk of data m. Then Bob applies his

decryption algorithm, using his private (decryption) key kd, yielding s = dkd(m) – this s is

called Bob’s signature on the message m. He then e-mails both m and s to Larry.

When Larry receives this signed message, the first thing he does is detach the signature

s and compute its encryption eke(s) using the public key he got off Bob’s website. Since

eke and dkd are inverses and it does not matter in which order they are applied, the result

should be m. If that is so, Larry can be sure that whoever sent the message also had access

to Bob’s secret key and so presumably is Bob himself.

Graphically:

Basic digital signatures:

Larry on public network Bob

pick kd ∈ Kd

compute ke = E(kd)
download ke ֋ public key ke ֋ publish ke

message m ∈M
compute s = dkd(m)

receive (m, s) ֋ signed message (m, s) ֋ transmit (m, s)

if eke(s) = m

ACCEPT

otherwise,

REJECT

One problem with this scheme is that it has effectively doubled the size of the message.

The way to make a smaller, more efficient signature is for it to consist of the decryption not

of all of m but instead of some function h(m). Here the function h should take a message

82 4. CRYPTOLOGY

of arbitrary size and produce a small, digested piece of data ... which nevertheless depends

upon every part of the input m. After, all, if h(m) depended only upon the first 100 bits

of m, for example, then a malicious Eve could alter the message in transit, and her change

would go undetected as long as she did not change the first 100 bits of the message.

Cryptologists have a name for functions like this h.

DEFINITION 4.5.1. A function h which takes as input arbitrary length strings of bits

and produces output bit strings of a fixed length is called a cryptographic hash function

if it satisfies

ease of computation: it is feasible to compute the h(m) for any m;

pre-image resistance: given a hash value t, it is infeasible to find an m such that

h(m) = t;

second pre-image resistance: given a specific input m1, it is infeasible to find an-

other m2 such that h(m2) = h(m1);

collision resistance: it is infeasible to find two messagesm1 andm2 such that h(m2) =

h(m1).

The words feasible and infeasible here have the same meaning here as in the previous

section that it is, or is not, possible to complete the computation in an amount of time

bounded by a polynomial function of the size of the inputs.

Notice that since a hash function takes inputs of arbitrary length but has a fixed output

size, there will necessarily be an infinite number of collisions

The creation of cryptographic hash functions is something of a black art. It turns out

that if one builds a candidate hash function with some clear structure (usually mathemati-

cal) – particularly if it is one that is fast to compute – a way to break one of the resistance

requirements is usually found by the cryptological community. For this reason, the algo-

rithms currently in wide use tend to be very ad hoc computations that just seem messy and

have resisted attempts at inversion or breaking resistance.

EXAMPLE 4.5.2. For around a decade starting in the early 1990s, the most widely used

cryptographic hash function was called md5. This algorithm was developed by Ron Rivest

and published in 1992. The output size of md5 is 128 bits.

While md5 was thought to be flawed since the middle 1990s, a real attack was not

published until 2004, when it was shown not to be collision resistant [WY05]. However,

md5 is still used extensively today to verify that a large data transfer has not suffered a

transmission error – i.e., it is still a useful tool to test for non-malicious data corruption.

(In this context of providing evidence for data integrity against non-malicious corruption,

a hash function is frequently called a fingerprint.)

4.5. DIGITAL SIGNATURES 83

EXAMPLE 4.5.3. The most widely used cryptographic hash function from the late

1990s until recently, and one which is built into many widely accepted and standardized

cryptographic protocols, is SHA-1, with an output size of 160 bits.

SHA-1 was developed by US National Security Agency (NSA) in a semi-public pro-

cess, and was adopted by the US National Institute of Standards and Technology (NIST) as

part of several US Federal Information Processing Standards .

In 2004, some work was published which indicated that SHA-1 might be vulnerable

to certain kinds of attack. (See [PS04].) For this reason, NIST required in 2010 many US

federal data protection applications to move to another hash function.

EXAMPLE 4.5.4. At the time of this writing, most security conscious users and organi-

zations recommend SHA-2, usually in its “SHA-256” variant, which has an output size of

256 bits. Given recent revelations of the NSA’s involvement – and weakening of – crypto-

graphic protocols, it might be a cause of concern that NSA participated in the development

of SHA-2.

Graphically:

RSA digital signatures:

Charlie on public network Bob

do RSA set-up, make

ke = (n, e) and d

download ke ֋ verification key ke ֋ publish ke

message m ∈M
compute s = (h(m))d

receive (m, s) ֋ signed message (m, s) ֋ transmit (m, s)

if h(m) = se (mod n)

ACCEPT

otherwise, REJECT

With this understood, we can describe digital signatures more formally.

DEFINITION 4.5.5. Suppose Bob sets up the RSA cryptosystem, as in Definition 4.4.5,

and chooses once and for all a cryptographic hash function h which he publishes on his

web page along with his public encryption key ke.

If Bob now wants to sign a message m, he appends to m the RSA digital signature

s = ddk(h(m)) before transmitting it to any third party, say Charlie.

When Charlie receives a signed message (m, s) which claims to be from Bob, he goes

to Bob’s website and downloads the public key ke and description of the cryptographic

hash function h. At this point, Charlie computes eke(s) and compares it to h(m). If they

are equal, he accepts the signature; if not, he rejects.

84 4. CRYPTOLOGY

In this context, Bob’s private/decryption key kd is called the signing key and his pub-

lic/encryption key ke is called the verification key.

4.5. DIGITAL SIGNATURES 85

Exercises for §4.5.

EXERCISE 4.5.1. Use the Pigeonhole Principle (Theorem 1.1.2) to prove that there

will always be an infinite number of collisions for a cryptographic hash function [although

they may not be feasibly computable].

EXERCISE 4.5.2. Give an example of a hash function h whose output size is one bit

and a specific input m1 for which there is no second pre-image; that is, ∄m2 such that

h(m2) = h(m1).

86 4. CRYPTOLOGY

4.6. Man-in-the-Middle Attacks, Certificates, and Trust

While public-key crypto can seem an unalloyed benefit to the networked world, close

examination of the details of the last two sections shows a dangerous gap between a casual

statement of the properties of these cryptographic tools and their reality. The distinction

which at first goes unnoticed is between Bob, the person, and the bits arriving over the wire

to Alice or Larry which claim to be from Bob. This has little effect if Eve is, as we have

mostly been assuming her to be, a passive observer of the communications between Alice

and Bob (and sometimes Larry). But if Eve has even more control over the network and

can replace all communications with her own versions, new attacks are possible.

Suppose Alice wants to send her secret message to Bob, again without ever having met

him to exchange with him a key for a symmetric cryptosystem. She hopes that he has a

public key, so she gets on the web and downloads his home page.

Here is where Eve springs into action, intercepting Bob’s (web server’s) response to the

web request. She keeps a copy of Bob’s public key kBe for herself, but substitutes into the

web page data in its place an RSA encryption key of her own, kEe – for which she alone

knows the corresponding decryption key kEd – and transmits the modified page on to Alice.

Alice composes her cleartextm, and transmits its corresponding ciphertext cA = ekEe (m)

to Bob, or so she thinks. Instead, Eve intercepts that ciphertext, decrypts and stores

m = dkE
d
(cA) = dkE

d
(ekEe (m)). Then, in order to make Alice and Bob think everything is

working normally (so they’ll keep up their revealing chatter), Eve transmits cE = ekBe (m)

on to Bob.

From Bob’s point of view, he gets an e-mail which seems to be from Alice and which,

when decrypted with his private key, does make perfect sense. Furthermore, if he interacts

with Alice off-line, she behaves as if she sent that message – in fact, she did, but not in

the particular encrypted form that Bob received. Eve has completely violated the confiden-

tiality of Alice and Bob’s communications, and she could violate the message integrity any

time she liked, still making it appear to come legitimately from Alice.

The above scenario is called a man-in-the-middle attack (pardon the non-gender-

neutral terminology).

Here is a graphical depiction of this attack:

4.6. MAN-IN-THE-MIDDLE ATTACKS, CERTIFICATES, AND TRUST 87

Man-in-the-middle attack:

Alice Eve Bob

generate keys:

public kBe , private kBd
intercept kBe ֋ publish kBe

generate keys:

public kEe , private kEd
download kEe ֋ kEe , spoof origin

message m ∈M
compute cA = ekEe (m)

transmit cA ֌ cA, intercept

extract the cleartext

m = dkE
d
(cA)

change to m′ if desired

compute cE = ekBe (m
′)

spoof origin cE ֌ receive cE

read the message

m′ = dkB
d
(cE)

So it seems that symmetric cryptosystems actually have one nice thing built in: when

the parties meet in that perfect, prelapsarian moment to exchange their symmetric key, they

presumably can have confidence in the identity of the person they’re talking to – if not, they

wouldn’t exchange the symmetric key until they had seen lots of official-looking identifi-

cation materials. Asymmetric cryptosystems have the fundamental difficulty to overcome

of establishing a trustworthy connection between a real person’s identity and a public key

on the Internet which purports to be from that person.

The technique from last section, §4.5, can help transfer the trust, at least. Suppose Alice

wants to engage in secret communication with Bob, but does not know if she can trust the

public key which appears to be on Bob’s web page. If that key came with an accompanying

digital signature issued by a trusted third party [TTP] of which Alice had the public key,

she could verify that the key was Bob’s, at least as far as the TTP knew.

Here is a formal definition.

DEFINITION 4.6.1. Individuals or organizations who want to use asymmetric cryp-

tography can go to a trusted third party called a certificate authority [CA] to request a

[digital] certificate for their public keys. This certificate would be a digital signature on

the public key itself, signed by the CA’s signing key. The CA’s verification key would be

assumed widely disseminated across the Internet or perhaps built into the basic operating

system software or computer hardware. Then anyone who wanted to use a public key could

88 4. CRYPTOLOGY

first check the validity of the associated certificate and have confidence that the intended

party did own the key in question.

The entire aggregate of certificates, CAs, pre-installed or widely distributed verification

keys, etc., is called a public key infrastructure or PKI.

In actual practice, the CA often cannot do more than certify that a certain public key

is owned by an individual who has access to a certain e-mail address, or the webmaster

password to a certain site, or some such purely Internet-based token. That much is usually

quite easy – connecting this with a real, external identity would require checking some

form of government-issued ID, probably, and is rarely done. Although it would be useful:

perhaps the government should act as a CA, and government IDs should have a built-in

RFID (recent US passports do!) which can transmit a certificate on the ID owner’s public

key.

There is one other approach to figuring out whether to have faith in a particular public

key, favored by those who mistrust authority but are willing to trust some others they know

personally. In this approach, individuals who know each other personally and have faith in

each other’s good cryptologic habits can each sign each other’s public keys, adding their

digital signatures to those which have already been collected. Then when you want to use

someone’s public key, you can unwrap a chain of digital signatures, each signing the next,

until you find one by a person whom you know personally, have met, and whose public key

you have verified.

This approach has become known as the web of trust, and is strongly supported by

GnuPG and other OpenPGP-compatible organizations, see gnupg.org.

By the way, to be useful, a web of trust must include as many individuals and their keys

as possible, and have as many connections (where individual X knows and signs individual

Y’s public key) as possible. One way to get this going quickly is to have a key-signing

party. If you are standing next to someone whom you know well who says “sure, this

other person is someone I know well and trust”, then you might be willing to sign both of

their keys right there. In practice, when you sign keys, you are standing there with someone

whom you trust, so it usually suffices to check the md5 fingerprint of their key and not the

whole thing – the md5 is shorter and standing there with this person you trust, presumably

you do not think that anyone there has devoted large computational resources to finding a

second md5 pre-image the fingerprint.

CHAPTER 5

Indices = Discrete Logarithms

We talked about the cyclic subgroup 〈a〉 of (Z/nZ)∗ generated by an element a in the

proof of our version of Lagrange’s Theorem 3.3.3, on the way to Euler’s Theorem 3.3.4.

Recall it consisted of all powers of a (well, of [a]n) in (Z/nZ)∗. Here are some examples:

n φ(n) (Z/nZ)∗ a 〈a〉 ordn(a)

2 1 {1} 1 {1} 1

3 2 {1, 2} 1 {1} 1

2 {2, 22 ≡ 1} 2

4 2 {1, 3} 1 {1} 1

3 {3, 32 ≡ 1} 2

5 4 {1, 2, 3, 4} 1 {1} 1

2 {2, 22 ≡ 4, 23 ≡ 3, 24 ≡ 1} 4

3 {3, 32 ≡ 4, 33 ≡ 2, 34 ≡ 1} 4

4 {4, 42 ≡ 1} 2

6 2 {1, 5} 1 {1} 1

5 {5, 52 ≡ 1} 2

7 6 {1, 2, 3, 4, 5, 6} 1 {1} 1

2 {2, 22 ≡ 4, 23 ≡ 1} 3

3 {3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1} 6

4 {4, 42 ≡ 2, 43 ≡ 1} 3

5 {5, 52 ≡ 4, 53 ≡ 6, 54 ≡ 2, 55 ≡ 3, 56 ≡ 1} 6

6 {6, 62 ≡ 1} 2

8 4 {1, 3, 5, 7} 1 {1} 1

3 {3, 32 ≡ 1} 2

5 {5, 52 ≡ 1} 2

7 {7, 72 ≡ 1} 2

TABLE 5.0.1. Cyclic subgroups of (Z/nZ)∗ for n = 2, . . . , 8

Each of these cyclic subgroups 〈a〉 has a size – being the order ordn(a) of its generator

– which divides the size of the ambient (Z/nZ)∗, as we know will happen from Euler’s

Theorem 3.3.4.

89

90 5. INDICES = DISCRETE LOGARITHMS

Some random things we also notice, which might or might not hold true in general,

given the small amount of evidence in this table, are:

• frequently there is an element a which generates the biggest possible cyclic sub-

group: 〈a〉 = (Z/nZ)∗;

• there seem always to be those big cyclic subgroups in Z/nZ when n is a prime;

• even some composite n give a Z/nZ which contains a big cyclic subgroup, except

for the case of the largest power of 2, which was n = 23, that we tried.

Just to see if those possible general statements hold a bit further, let’s compute two

more examples. For these we give only the sizes of (Z/nZ)∗ and 〈a〉, not complete lists of

their elements, to conserve space and since the elements of (Z/nZ)∗ can be found in the

column labelled “a”:

n φ(n) a ∈ (Z/nZ)∗ ordn(a)

16 8 1 1

3 4

5 4

7 2

9 2

11 4

13 4

15 2

17 16 1 1

2 8

3 16

4 4

5 16

6 16

7 16

8 8

9 8

10 16

11 16

12 16

13 4

14 16

15 8

16 2

TABLE 5.0.2. Cyclic subgroups of (Z/nZ)∗ for n = 16 and n = 17

5.1. MORE PROPERTIES OF MULTIPLICATIVE ORDER 91

Our guesses (large powers of 2 not so good; other n’s, particularly prime, are good) still

hold true. Of course, any finite amount of evidence for a general mathematical statement is

very inconclusive....

Now to the formal analysis.

5.1. More Properties of Multiplicative Order

But first, we need some more facts about [multiplicative] order.

THEOREM 5.1.1. Suppose n ∈ N and a ∈ Z satisfy n ≥ 2 and gcd(a, n) = 1. Then

ak ≡ 1 (mod n) for k ∈ N iff ordn(a) | k.

PROOF. One direction is very easy: if k ∈ N satisfies ordn(a) | k then ∃d ∈ N such

that k = ordn(a) · d and thus

ak = aordn(a)·d = (aordn(a))d ≡ 1d = 1 (mod n) .

Conversely, suppose k ∈ N is such that ak ≡ 1 (mod n). Apply the Division Algo-

rithm to get q, r ∈ N such that k = ordn(a) · q + r and 0 ≤ r < ordn(a). Then

1 ≡ ak = aordn(a)·q+r = (aordn(a))q · ar ≡ 1q · ar ≡ ar (mod n) .

But the definition of the order ordn(a) is that it is the smallest positive integer such that a

to that power is congruent to 1. The only way for ar ≡ 1 (mod n) and 0 ≤ r < ordn(a)

to be true, then, is if r = 0. Thus k = ordn(a) · q and ordn(a) | k, as desired. �

What this will mean is that when we work in the cyclic subgroup of (Z/nZ)∗ gener-

ated by some element a, we should work with the powers of a as if the powers lived in

Z/(ordn(a))Z. That is:

THEOREM 5.1.2. Suppose n ∈ N and a ∈ Z satisfy n ≥ 2 and gcd(a, n) = 1. Then

aj ≡ ak (mod n) for j, k ∈ N iff j ≡ k (mod ordn(a)).

PROOF. Again, one direction is very easy: if j, k ∈ N satisfy j ≡ k (mod ordn(a))

then ∃ℓ ∈ Z such that j = k + ordn(a) · ℓ from which we compute

aj = ak+ordn(a)·ℓ = ak · (aordn(a))ℓ ≡ ak · 1ℓ = ak (mod n) .

Conversely, suppose j, k ∈ N are such that aj ≡ ak (mod n) and, without loss of

generality, j ≥ k. Multiplying both sides of this congruence by (a−1)k, which exists since

gcd(a, n) = 1, we get aj−k ≡ 1 (mod n). Then by Theorem 5.1.1 we have ordn(a) |
(j − k) or j ≡ k (mod ordn(a)). �

EXAMPLE 5.1.3. The rows in Table 5.0.1 bear out Theorems 5.1.1 and 5.1.2: each

cyclic subgroup (row) has a number of elements which divides the corresponding φ(n),

and powers of the generator a are only defined up to ordn(a).

92 5. INDICES = DISCRETE LOGARITHMS

It also seems that some of the smaller cyclic subgroups sometimes occur as a subset of

a larger cyclic subgroup. So in mod n = 7, if a = 3 and b = a2 ≡ 2, then we have the

containment 〈b〉 ⊂ 〈a〉, where 〈b〉 consists of half of the elements of 〈a〉, namely the even

powers of a:

〈b〉 =
{
b, b2, b3

}
= {2, 4, 1} =

{
32, 34, 36

}
⊂

{
3, 32, 33, 34, 35, 36

}
= 〈a〉

Looking instead at c = 33 ≡ 6, we still have 〈c〉 ⊂ 〈a〉, but now 〈c〉 consists of one third of

the elements of 〈a〉, the powers of a which are multiples of 3:

〈c〉 =
{
c, c2

}
= {6, 1} =

{
33, 36

}
⊂

{
3, 32, 33, 34, 35, 36

}
= 〈a〉

The last part of this example seems to be asking for a general statement about what size

subset of a cyclic subgroup 〈a〉 is formed of the cyclic subgroup
〈
ak
〉

for some k ∈ N. This

size will just be the order of that element ak, so we need the following

THEOREM 5.1.4. Suppose n ∈ N and a ∈ Z satisfy n ≥ 2 and gcd(a, n) = 1. Then

∀k ∈ N, ordn(a
k) = ordn(a)

gcd(ordn(a),k)

PROOF. Fix some k ∈ N and let r = ord(ak) and s = ord(a); with this notation, what

we are trying to prove is that r =
s

gcd(s, k)
.

We shall repeatedly use in the proof the fact that since a gcd is a divisor, gcd(s, k) | s
and gcd(s, k) | k, which means in turn that both

s

gcd(s, k)
,

k

gcd(s, k)
∈ N.

Now to the proof.

The definition of order is that r is the smallest natural number such that (ak)r ≡ 1

(mod n). Notice that

(ak)
s

gcd(s,k) = (as)
k

gcd(s,k) = 1
k

gcd(s,k) ≡ 1 (mod n) .

By Theorem 5.1.1, we conclude that r
∣
∣

(
s

gcd(s, k)

)

.

Smallest or not, since akr = (ak)r ≡ 1 (mod n), s | kr by Theorem 5.1.1, so ∃m ∈ N

such thatms = kr. Dividing both sides by gcd(s, k), we get an equation of natural numbers

m

(
s

gcd(s, k)

)

=

(
k

gcd(s, k)

)

r;

which means
s

gcd(s, k)

∣
∣
∣

(
k

gcd(s, k)

)

r .

By Theorem 1.5.5, gcd

(
s

gcd(s, k)
,

k

gcd(s, k)

)

= 1, so Euclid’s Lemma 2.1.6 tells us that

s

gcd(s, k)

∣
∣ r.

We have shown that r and
s

gcd(s, k)
divide each other. But that means they are equal,

which is what we were trying to prove. �

5.1. MORE PROPERTIES OF MULTIPLICATIVE ORDER 93

Exercises for §5.1.

EXERCISE 5.1.1. Suppose n ∈ N satisfies n ≥ 2. Prove that if there exists a ∈
(Z/nZ)∗ such that ordn(a) = n− 1, then n is prime.

EXERCISE 5.1.2. Suppose p is an odd prime and a ∈ (Z/pZ)∗. Prove that if ∃k ∈ N

such that ordp(a) = 2k then ak ≡ −1 (mod p). [Hint: look at the proof of Lemma 3.2.1.]

EXERCISE 5.1.3. Suppose n ∈ N satisfies n ≥ 2 and a, b ∈ Z/nZ are both relatively

prime to n. Prove that

ordn(ab) | ordn(a) ordn(b) .

EXERCISE 5.1.4. Prove that there are infinitely many primes congruent to 1 mod 4, by

filling in the details of the following outline:

(1) Prove: if an odd prime p and n ∈ Z are such that n2 ≡ −1 (mod p), then 4 | φ(p)
[use a theorem in this section]. Why is it necessary to exclude the even prime

here?

(2) Therefore for n ∈ Z, the odd prime divisors of n2 + 1 are congruent to 1 mod 4.

(3) Now assume for contradiction’s sake that there are only finitely many primes

p1, . . . , pn congruent to 1 mod 4 and consider the number (2p1 · · · · · pn)2 + 1.

Apply the previous step....

94 5. INDICES = DISCRETE LOGARITHMS

5.2. A Necessary Digression: Gauss’s Theorem on Sums of Euler’s Function

Later in this chapter we will need a fact first proved by Gauss about Euler’s φ function:

THEOREM 5.2.1. For all n ∈ N,
∑

d∈N
s.t. d|n

φ(d) = n .

We’ll give two proofs, which illustrate different features of this situation:

PROOF 1. Fix n ∈ N.

Let’s define some subsets of {1, . . . , n}, dependent upon a choice of a positive divisor

d | n, as follows

Sd = {k ∈ N | 1 ≤ k ≤ n and gcd(k, n) = d} .

These sets are disjoint since for each k ∈ N such that 1 ≤ k ≤ n, d = gcd(k, n) has a

specific value and k is only in that Sd.

For k ∈ Sd, gcd(k, n) = d or, by Theorem 1.5.5, gcd(k/d, n/d) = 1. Thus #(Sd) is

the number of elements ℓ ∈ N in the range 1 ≤ ℓ ≤ n/d which are relatively prime to n/d,

i.e., #(Sd) = φ(n/d).

Every k ∈ Z in the range 1 ≤ k ≤ n is in exactly one of these Sd, for d a positive

divisor of n. Therefore

{1, . . . , n} =
⋃

d∈N
s.t. d|n

Sd

so

n = #({1, . . . , n}) = #







⋃

d∈N
s.t. d|n

Sd







=
∑

d∈N
s.t. d|n

#(Sd) =
∑

d∈N
s.t. d|n

φ(n/d) .

But as d runs over the positive divisors of n, so does n/d; in other words

{d | d ∈ N, 1 ≤ d ≤ n and d | n} = {n/d | d ∈ N, 1 ≤ d ≤ n and d | n}

We can therefore rewrite the last big equation as

n =
∑

d∈N
s.t. d|n

φ(n/d) =
∑

d∈N
s.t. d|n

φ(d)

which is what we were trying to prove. �

PROOF 2. This approach will concentrate on the function

F (n) =
∑

d∈N
s.t. d|n

φ(d) ,

which has some very nice properties.

5.2. A NECESSARY DIGRESSION: GAUSS’S THEOREM ON SUMS OF EULER’S FUNCTION 95

For example, suppose p is a prime and k ∈ N. Then the divisors of pk are 1, p, p2, . . . , pk,

so

F (pk) = φ(1)+φ(p)+φ(p2)+· · ·+φ(pk) = 1+(p−1)+(p2−p)+· · ·+(pk−pk−1) = pk .

Furthermore, if p and q are distinct primes, then the divisors of pq are 1, p, q, and pq.

Also, gcd(p, q) = 1, so by Theorem 2.5.3

F (pq) = φ(1) + φ(p) + φ(q) + φ(pq)

= φ(1) + φ(p) + φ(q) + φ(p)φ(q)

= (1 + φ(p))(1 + φ(q))

= F (p)F (q) ,

From this fact, one can prove (it’s an exercise below) that F (ab) = F (a)F (b) whenever

a, b ∈ N are relatively prime. This means that F has the same sort of multiplicative property

for relatively prime factors as does φ.

We are ready to finish the proof. So let n ∈ N be any number such that n > 1 (for

n = 1, the theorem is trivial). Suppose the prime decomposition of n is given by

n = pk11 · · · · · pkrr ,

where the primes {p1, . . . , pr} are distinct. Therefore gcd(pkii , p
kj
j) = 1 if i 6= j and so

we can use the multiplicative property of F and our calculation of F for prime powers to

conclude

F (n) = F (pk11 · · · · · pkrr)

= F (pk11) · · · · · F (pkrr)

= pk11 · · · · · pkrr
= n ,

which is what we wanted to prove. �

96 5. INDICES = DISCRETE LOGARITHMS

Exercises for §5.2.

EXERCISE 5.2.1. Finish the second proof of Gauss’s Theorem 5.2.1 by proving that

F (ab) = F (a)F (b) for all a, b ∈ N which are relatively prime.

5.3. PRIMITIVE ROOTS 97

5.3. Primitive Roots

Now back to those elements which generate large cyclic subgroups – which have a

name:

DEFINITION 5.3.1. Given n ∈ N such that n ≥ 2, an element a ∈ (Z/nZ)∗ is called a

primitive root mod n if ordn(a) = φ(n). We shall also call an integer x ∈ Z a primitive

root mod n if [x]n is a primitive root in the sense just defined.

EXAMPLE 5.3.2. From the two tables in the introduction to this chapter we can read

off the following primitive roots mod their respective n’s:

n Primitive Roots mod n φ(n) φ(φ(n))

2 1 1 1

3 2 2 1

4 3 2 1

5 2, 3 4 2

6 5 2 1

7 3, 5 6 2

8 none 4 2
...

16 none 8 4

17 3, 5, 6, 7, 10, 11, 12, 14 16 8

TABLE 5.3.1. Primitive roots for n = 2, . . . , 8, 16, 17

We have included the column of φ(n) since that is the order that each primitive root must

have. And then we added the column of φ(φ(n)) as well, since by some strange magic it

appears frequently to compute the number of primitive roots.

Let us state formally, and prove, the general result noticed in this example:

THEOREM 5.3.3. Given n ∈ N satisfying n ≥ 2, if n has any primitive roots than it

has exactly φ(φ(n)) primitive roots.

PROOF. Let a ∈ (Z/nZ)∗ be a primitive root. That means that

〈a〉 =
{
a, a2, . . . aordn(a)

}
= (Z/nZ)∗

since ordn(a) = φ(n) = # ((Z/nZ)∗). Any other primitive root b, being an element of

(Z/nZ)∗ must be one of these powers of a. In other words, ∃k ∈ N such that b = ak.

In order for this b to be a primitive root, its order must be φ(n). But from Theorem 5.1.4,

we know that

ord(b) =
ord(a)

gcd(ord(a), k)
=

φ(n)

gcd(φ(n), k)
.

98 5. INDICES = DISCRETE LOGARITHMS

Therefore b = ak will be a primitive root if and only if gcd(φ(n), k) = 1. From the

definition of Euler’s φ function, this happens for exactly φ(φ(n)) values of k. �

Let’s see if we can prove that in some circumstances, we will have the first primitive

root that the above theorem requires. The easiest situation in which that might happen will

probably be when the modulus is prime, as we have the strongest tools to work with in that

case.

Finding elements of a particular order d amounts (in part) to finding solutions to the

equation xd − 1 ≡ 0 (mod p). The first step toward this is the following more general

theorem about polynomials in mod p due to Lagrange:

THEOREM 5.3.4. For n ∈ N and a0, . . . , an ∈ Z, the polynomial

anx
n + · · ·+ a1x+ a0 ≡ 0 (mod p) ,

where an 6≡ 0 (mod p), has at most n solutions in Z/pZ if p is prime.

PROOF. We use induction on the degree n. The base case n = 1 amounts to solving

the linear congruence a1x + a0 ≡ 0 (mod p) where a1 6≡ 0 (mod p). Since p is prime,

this means that gcd(p, a1) = 1, and therefore the linear congruence has a unique solution

mod p by the version of Theorem 2.2.4 as stated in Remark 2.2.5.

Now for the inductive step, assuming that the theorem is true for some n ∈ N, we shall

prove it for the case n + 1. So let a0, . . . , an+1 ∈ Z be such that an+1 6≡ 0 (mod p). If

a(x) = an+1x
n+1 + anx

n + · · ·+ a1x+ a0

has no zeros in mod p, then the theorem is certainly true for this polynomial of degree n+1:

the number of solutions to a(x) ≡ 0 (mod p) is 0 < n+ 1.

If instead a(x) has at least one zero z1 in mod p, do long division of polynomials to get

a(x) = b(x)(x− z1) + r(x)

where b(x) and r(x) are polynomials with integral coefficients and such that

0 ≤ deg(r(x)) < deg(x− z1) = 1 .

It therefore follows that r(x) is a constant polynomial, say with value r1 ∈ Z.

Plug z1 into the above formula resulting from division of polynomials to get

0 ≡ a(z1) ≡ b(z1)(z1 − z1) + r1 ≡ r1 (mod p) .

Hence r1 ≡ 0 (mod p), which means that our polynomial a(x) ≡ b(x)(x − z1) (mod p).

But an+1 equals (one times) the leading coefficient of b(x), so that leading coefficient must

not be congruent to 0 mod p.

Hence the inductive hypothesis applies to b(x) and tells us that it has no more than n

roots in mod p. These roots of b(x), plus the single root of (x − z1), total no more than

n+ 1 roots for a(z) = b(x)(x − z1).

5.3. PRIMITIVE ROOTS 99

All we need to do to finish is to see that any root of a(x) must in fact be a root of b(a)

or (x− z1). So suppose r ∈ Z is a root, so

a(r) = b(r)(r − z1) ≡ 0 (mod p),

which means in turn that p | b(r)(r− z1). Then by Proposition 3.1.5 we must have p | b(r)
or p | (r − z1). In other words, b(r) ≡ 0 (mod p) or (r − z1) ≡ 0 (mod p), as we hoped.

[This amounts to using what is called in basic algebra the “zero product property”, which

is true in Z/pZ for p prime by Proposition 3.1.5; in abstract algebra, we say that Z/pZ is a

domain if p is prime.]

Thus the roots of a(x) all come from roots of b(x) or (x− z1), and so number at most

n+ 1, which means we have proven the inductive step. �

So much for a maximum number of roots. In the following particular case, we can get

the exact number of roots:

THEOREM 5.3.5. If p is prime and d | p − 1, then there are exactly d solutions, up to

congruence mod p, of the congruence

xd = 1 (mod p) .

PROOF. Let p and d be as in the statement, and define m = (p − 1)/d ∈ N. We use a

clever factorization, defining

a(x) = xd − 1,

b(x) = xdm−d + xdm−2d + · · ·+ xd + 1, and

c(x) = xp−1 − 1

so that c(x) = a(x)b(x).

Notice that by Fermat’s Little Theorem, c(x) has exactly p− 1 roots which are distinct

in mod p, being {1, . . . , p − 1}. Also, by the previous Theorem 5.3.4, b(x) has at most

deg(b(x)) = dm − d = p− 1 − d roots. Since, as in the proof of that Theorem 5.3.4 (the

part where we mentioned the “zero product property”), roots of c(x) correspond exactly to

the roots of a(x) and those of b(x), there must be at least d roots of a(x) to add to these no

more than p− 1− d roots of b(x), making the exactly p− 1 roots of p− 1. �

We are now in a position to quantify exactly the congruence classes in Z/pZ, for p a

prime, of particular orders:

THEOREM 5.3.6. If p is prime and d | p − 1, then there are exactly φ(d) distinct

congruence classes of order d in Z/pZ.

PROOF. Let p and d be as in the statement and write

ψ(k) = # ({ℓ ∈ Z | 1 ≤ ℓ ≤ p− 1 and ordp(ℓ) = k}) .

100 5. INDICES = DISCRETE LOGARITHMS

By our version of Lagrange’s Theorem 3.3.3, any ℓ ∈ Z such that 1 ≤ ℓ ≤ p − 1 has an

order which divides φ(p) = p− 1, so
∑

k∈N
s.t. k|p−1

ψ(k) = p− 1 .

In addition, by Gauss’s Theorem 5.2.1,
∑

k∈N
s.t. k|p−1

φ(k) = p− 1 .

Therefore
∑

k∈N
s.t. k|p−1

φ(k) =
∑

k∈N
s.t. k|p−1

ψ(k) .

Our goal now is to show that ∀k ∈ N such that k | p− 1, we have ψ(k) ≤ ψ(k). If we can

do this, then in fact for all such k, we would have to have ψ(k) = ψ(k) because if for one

k we had ψ(k) < ψ(k) then there would be no way for another k to give ψ(k) > ψ(k) so

that
∑
ψ(k) =

∑
φ(k) could still hold.

So let k ∈ N satisfy k | p− 1. If ψ(k) = 0, meaning that there are no elements of order

k, then certainly ψ(k) ≤ φ(k) as φ(k) is a non-negative function.

Suppose ψ(k) > 0, meaning there exists at least one element, call it a, of order k in

Z/pZ. Notice that for any n ∈ N, (an)k = (ak)n ≡ 1n ≡ 1 (mod p), which means that

a, . . . , ak are distinct elements of Z/pZ which all satisfy

xk − 1 ≡ 1 (mod p) .

By Theorem 5.3.5, there are exactly k solutions of this congruence equation. These so-

lutions include all of the elements of Z/pZ of order k, and maybe other elements, whose

order is a divisor of k, in which we are not so interested.

But in fact, by Theorem 5.1.4, we know exactly the orders of these elements a, . . . , ak:

the order of aℓ is
ordp(a)

gcd(ordp(a), ℓ)
=

k

gcd(k, ℓ)
.

Thus the elements of Z/pZ of order k are those elements aℓ for ℓ ∈ Z satisfying 1 ≤
ℓ ≤ k for which gcd(k, ℓ) = 1. There are therefore φ(k); in other words, ψ(k) = φ(k). �

So, the punch line:

COROLLARY 5.3.7. If p is prime, there are φ(p− 1) primitive roots in Z/pZ.

PROOF. Use k = p− 1 in the previous theorem. �

Just to finish the thread of conjectures with which we started this chapter and section,

let us prove the

5.3. PRIMITIVE ROOTS 101

THEOREM 5.3.8. Let k ∈ N satisfy n ≥ 3. Then n = 2k has no primitive roots.

PROOF. We shall prove that for all odd numbers a,

a2
k−2 ≡ 1 (mod 2k)

by induction on k.

Start with k = 3 and just look at all the congruence classes in Z/8Z with odd represen-

tatives, and the squares of these classes:

[1]28 = [1]8, [3]28 = [9]8 = [1]8, [5]28 = [25]8 = [1]8, and [7]28 = [49]8 = [1]8 .

So the base case k = 3 is established.

Now assume the statement holds for the value k, meaning that for all odd a,

a2
k−2 ≡ 1 (mod 2k) .

In other words, ∃ℓ ∈ Z such that

a2
k−2

= 2kℓ+ 1 .

Squaring both sides of this, we get

a2
k−1

=
(

a2
k−2

)2

=
(
2kℓ+ 1

)2
= 22kℓ2 + 2 · 2kℓ+ 1 = 2k+1

(
2k−1ℓ2 + ℓ

)
+ 1,

meaning that

a2
(k+1)−2

= a2
k−1 ≡ 1 (mod 2(k+1)) .

The inductive proof of the statement with which we began this proof is done. But

notice that this means that for all odd numbers a, or, otherwise, for all a ∈ (Z/2kZ)∗,

ord2k(a) ≤ 2k−2 < 2k−1. Thus n = 2k has no primitive roots, which would all have to be

odd numbers of order φ(2k) = 2k−1. �

As we thought we noticed, based on the few examples we had calculated, large powers

of two do not have primitive roots.

102 5. INDICES = DISCRETE LOGARITHMS

Exercises for §5.3.

EXERCISE 5.3.1. Express each of the primitive roots of 17 as a power of one of them.

EXERCISE 5.3.2. Find all of the primitive roots for the primes 11 and 13 and express

them each as a power of one of them.

EXERCISE 5.3.3. Find all of the elements of Z/13Z which have each possible order.

EXERCISE 5.3.4. By expressing everything as powers of single primitive root, use

Corollary 5.3.7 to prove one direction of Wilson’s Theorem

EXERCISE 5.3.5. If r is a primitive root of the odd prime p, prove that r(p−1)/2 ≡ −1
(mod p). Also, prove that if s is any other primitive root of p, then rs cannot be a primitive

root.

EXERCISE 5.3.6. Prove that the inverse of a primitive root is always a primitive root.

EXERCISE 5.3.7. If p is a prime congruent to 1 mod 4, prove that for all primitive

roots r of p, −r is also a primitive root. If instead p is a prime congruent to 3 mod 4,

prove that ordp(−r) = (p− 1)/2.

5.4. INDICES 103

5.4. Indices

So for some values of n ∈ N, there exists a primitive root a ∈ (Z/nZ)∗, in which case

we have seen that

〈a〉 =
{
a, a2, . . . aordn(a)

}
= (Z/nZ)∗ .

That means that any b ∈ (Z/nZ)∗ is some power of a. “But which power?” you cry, so we

make the

DEFINITION 5.4.1. If n ∈ N has a primitive root a, then for any b ∈ Z such that

gcd(b, n) = 1 the smallest k ∈ N such that b ≡ ak (mod n) is called the index of b

relative to a and is denoted inda(b). We shall also sometimes talk about inda(x) where

x ∈ (Z/nZ)∗, meaning the index relative to a of any representative b of the congruence

class x.

EXAMPLE 5.4.2. Working from the tables above (5.0.1, 5.0.2, and 5.3.1), it is easy to

compute a number of examples. First, for the smaller values of the moduli, where there are

few primitive roots:

n a b inda(b)

2 1 1 1

3 2 1 2

2 1

4 3 1 2

3 1

5 2 1 4

2 1

3 3

4 2

5 3 1 4

2 3

3 1

4 2

n a b inda(b)

7 3 1 6

2 2

3 1

4 4

5 5

6 3

5 1 6

2 4

3 5

4 2

5 1

6 3

TABLE 5.4.1. Index values for moduli n = 2, 3, 4, 5, 7

For the two larger moduli we worked out above, only n = 17 has primitive roots.

Since (Z/17Z)∗ has 16 elements and 8 primitive roots, we make a larger table for just this

modulus:

104 5. INDICES = DISCRETE LOGARITHMS

inda(b)
b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a

3 16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

5 16 6 13 12 1 3 15 2 10 7 11 9 4 5 14 8

6 16 2 15 4 11 1 5 6 14 13 9 3 12 7 10 8

7 16 10 3 4 15 13 1 14 6 9 5 7 12 11 2 8

10 16 10 11 4 7 5 9 14 6 1 13 15 12 3 2 8

11 16 2 7 4 3 9 13 6 14 5 1 11 12 15 10 8

12 16 6 5 12 9 11 7 2 10 15 3 1 4 13 14 8

14 16 14 9 12 13 7 3 10 2 11 16 5 4 1 6 8

TABLE 5.4.2. Index values for modulus n = 17

Some things are natural to conjecture, given these examples and the simple definition

of index; many of them are very easy to prove (and are exercises):

THEOREM 5.4.3. Let n ∈ N have a primitive root a. Then

(1) inda(1) = ordn(a) = φ(n); equivalently, inda(1) ≡ 0 (mod φ(n))

(2) inda(a) = 1

(3) ∀b, c ∈ Z such that gcd(b, n) = gcd(c, n) = 1, we have

inda(bc) ≡ inda(b) + inda(c) (mod φ(n))

(4) ∀b ∈ Z such that gcd(b, n) = 1 and ∀k ∈ N, we have

inda(b
k) ≡ k · inda(b) (mod φ(n))

These properties of inda are strikingly similar to the basic properties of a logarithm

with base a. For this reason, indices are called discrete logarithms in the computer science

literature. For cryptological applications, it is important to note that exponentiation in some

(Z/nZ)∗ is an excellent candidate one-way function:

• Given n, a, and k, fast modular exponentiation is a feasible computation of b = ak

in mod n.

• Given n, a, and b, no known feasible algorithm finds a k = inda(b) such that

ak ≡ b (mod n).

We will discuss some discrete logarithm-based cryptological protocols in the next sections.

Before turning to cryptology, we explore some pure mathematical applications of in-

dices. Like the applications of logarithms in basic algebra, the usefulness of indices comes

from the above Theorem 5.4.3 enabling convenient algebraic manipulations of powers and

multiplications. Here’s an

EXAMPLE 5.4.4. We use indices to solve the congruence

3x5 ≡ 4 (mod 7)

5.4. INDICES 105

by first taking ind5 of both sides

ind5(3) + 5 ind5(x) ≡ ind5(4) (mod 6)

and applying all the rules in Theorem 5.4.3. Looking in Table 5.4.1, we translate that into

5 + 5 · ind5(x) ≡ 2 (mod 6)

or, solving:

ind5(x) ≡ 5−1 · 3 ≡ 5 · 3 ≡ 3 (mod 6)

which means, searching through the table again, that x = 6.

Just to check, notice that 3 · 65 = 23328 ≡ 4 (mod 7).

What if we solve the same equation, but use a different primitive root in our indices?

Compute

ind3(3) + 5 ind3(x) ≡ ind3(4) (mod 6)

so

1 + 5 · ind5(x) ≡ 4 (mod 6)

and this yields the same equation

ind5(x) ≡ 5−1 · 3 ≡ 3 (mod 6)

and thus the same solution x = 6.

Caution: A common mistake with indices is to use the same modulus with the indices as

with the original congruence. Instead, when the congruence is in mod n, for n ∈ N, the

index congruence is in mod φ(n)!

106 5. INDICES = DISCRETE LOGARITHMS

Exercises for §5.4.

EXERCISE 5.4.1. In the modulus n = 17, use indices to solve the congruences

(a) 4x ≡ 11 (b) 5x6 ≡ 7 (c) x12 ≡ 13

(d) 8x5 ≡ 10 (e) 9x8 ≡ 8 (f) 7x ≡ 7

EXERCISE 5.4.2. The logarithm rules in Theorem 5.4.3 are very similar to rules for the

usual logarithm, except one is missing: the change of base formula. Figure out what that

should be in the context of indices, make a formal statement, and prove it.

EXERCISE 5.4.3. Let p be an odd prime and a a primitive root mod p.

(a) Prove that inda(−1) = (p− 1)/2

(b) If x, y ∈ (Z/pZ)∗ satisfy xy ≡ 1 (mod p), then what is the relationship between

inda(x) and inda(y)? Prove it!

(c) If x, y ∈ (Z/pZ)∗ satisfy x + y ≡ 0 (mod p), then what is the relationship

between inda(x) and inda(y)? Prove it!

5.5. DIFFIE-HELLMAN KEY EXCHANGE 107

5.5. Diffie-Hellman Key Exchange

About a year before the RSA cryptosystem was invented, Whitfield Diffie and Martin

Hellman published New directions in cryptography [DH76], the first full description of a

working public key cryptosystem in the open scientific literature.1 They defined in this

paper something which has since been named after them:

DEFINITION 5.5.1. The following protocol is called Diffie-Hellman key exchange

[DHKE]:

(1) Alice and Bob agree upon a large prime p and a primitive root r ∈ (Z/pZ)∗ and

publish both.

(2) Alice chooses an α ∈ Z satisfying 1 ≤ α ≤ p − 1, computes A = rα (mod p),

keeps α secret, but publishes A.

(3) Bob chooses a β ∈ Z satisfying 1 ≤ β ≤ p − 1, computes B = rβ (mod p),

keeps β secret, and publishes B.

(4) Alice gets the public value B and computes S = Bα.

(5) Bob gets A and computes the same value S = Aβ .

(6) Both Alice and Bob use the shared secret S for future communications encrypted

with some symmetric cryptosystem upon which they had previously agreed.

The value S which both Alice and Bob have [but Eve does not] is called their shared key

or shared secret.

Here is a graphical representation:

Diffie-Hellman key exchange:

Alice on public network Bob

pick a prime p

find a primitive root r

pick α, compute pick β, compute

A = rα (mod p) B = rβ (mod p)

publish A ֌ A B ֋ publish B

get B, compute get A, compute

S = Bα (mod p) S = Aβ (mod p)
assymteric crypto with key S⇐=======================⇒

PROPOSITION 5.5.2. When Alice and Bob follow the DHKE protocol, they both com-

pute the same shared key; i.e., DHKE works.

1Although in fact, some workable public key crypto had been invented earlier within the US/UK in-

telligence community, and not shared with the public. Since quite early in the Cold War, there have been

mathematical theorems and proofs held in secret by large governments.

108 5. INDICES = DISCRETE LOGARITHMS

PROOF. There’s very little to check here: using the notation of the definition and, in

the very middle, the commutativity of multiplication, we have

Bα =
(
rβ
)α

= rβ·α = rα·β = (rα)β = Aβ .

The left end of this equality is the S that Alice computes, while the right end is the one that

Bob computes, and they are the same. �

EXAMPLE 5.5.3. Alice and Bob agree in open, public discussion to use the prime

p = 617 and its primitive root r = 17.

Alice privately chooses her secret value α = 19 and sends the value

A = 1719 ≡ 385 (mod 617)

to Bob by insecure e-mail. (All unencrypted e-mail is insecure, of course.)

Bob chooses his secret value β = 13 and sends the value

B = 1713 ≡ 227 (mod 617)

to Alice by insecure e-mail.

Alice computes the shared secret

S = Bα = 22719 ≡ 127 (mod 617) .

Bob computes the same shared secret instead by

S = Aβ = 38513 ≡ 127 (mod 617) .

They then can use this value to do symmetric crypto for the rest of this communication.

What about the practicality of DHKE? As was discussed in §4.4, finding a the [large]

prime p (we continue using the notation in Definition 5.5.1) is computationally feasible, as

are the several modular exponentiations in the DHKE protocol. There remains the question

of finding the primitive root r.

One way is to avoid searching for r more than once. After one prime p and an associated

primitive root r for p are found, each user can choose their secret (Alice’s α and Bob’s β),

without overlap or conflict. This is the approach suggested in some Internet standards, see,

e.g., [HC] and [LK08].

Another, more mathematical, strategy is based on the following definition, which we

give because of its independent mathematical interest and the amazing life of its namesake.

DEFINITION 5.5.4. A prime p with the property that 2p + 1 is also a prime is called a

Sophie Germain prime.

It is not known how many Sophie Germain primes there are, although it is conjectured

that there are an infinite number. In fact, there are precise conjectures on the asymptotic

density of such primes, as well as algorithmic techniques to generate them efficiently; see

[Sho09].

5.5. DIFFIE-HELLMAN KEY EXCHANGE 109

EXAMPLE 5.5.5. The first seventeen Sophie Germain primes are

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239

The sequence of all Sophie Germain primes is sequence A005384 at the On-Line Encyclo-

pedia of Integer Sequences, oeis.org.

The largest known Sophie Germain prime, at the time of this writing, is

18543637900515× 2666667 − 1

discovered in 2012 by Philipp Bliedung and a large distributed network of computers.

The reader is asked to investigate the usefulness of Sophie Germain primes in DHKE

is explored in the exercises, below.

As mentioned in the last section 5.4, DHKE depends for its security on modular expo-

nentiation be a one-way function: feasible to compute forwards (by fast modular exponen-

tiation) but infeasible to computer backwards (which is an index).

If discrete logs could be computed by a feasible algorithm, then Eve could completely

break the security of DHKE. Starting with the public values ofA andB, she would compute

α = indr(A) and β = indr(B). She could then compute S as either Bα, Aβ, or, directly,

as rα·β. Having S, she could decrypt all of Alice and Bob’s communications as they go by.

Actually, it is not necessary for Eve to be able to compute discrete logs, as long as she

can solve a specific computation problem.

DEFINITION 5.5.6. The Diffie-Hellman problem [DHP] consists of the following

question: Given

• a prime p,

• a primitive root r ∈ (Z/pZ)∗, and

• two elements a, b ∈ (Z/pZ)∗ which are known to be of the form a = rx and

b = ry for x, y ∈ N, although the x and y are not known

compute

• rxy .

An efficient way to compute discrete logs would of course result in a solution of the

Diffie-Hellman problem, but it is not known if there might be a solution of the DHP which

is does not consist of a full-blown algorithm to compute discrete logs. Since this question

is open as of this writing, it makes sense to make the most precise statement: breaking

DHKE amounts of solving the DHP, which is not feasible on a classical computer2

DHKE is one of the most widely used cryptologic protocols on the Internet. It is part

of SSL, TLS, SSH, IPsec, and many VPNs, among others.

2As is the case with factoring, there is a known algorithm for a quantum computer which solves the DHP

efficiently, see [Sho94].

110 5. INDICES = DISCRETE LOGARITHMS

Exercises for §5.5.

EXERCISE 5.5.1. Suppose you had an efficient algorithm to generate large Sophie Ger-

main primes. Describe how you would use this to do the initial choice of public parameters

for DHKE – go through all of the set-up stages of this protocol, and explain how each can

be done feasibly, based on either past discussions of calculations we can do feasibly or on

new ideas you develop here.

EXERCISE 5.5.2. The number p = 11717 is prime, and r = 103 is a primitive root of

this p. Playing the role of Alice, your instructor computed A = 5123.

Please play the role of Bob and do what is necessary to establish a shared key with your

instructor: you compute S as in DHKE, and send your B by e-mail so that your instructor

can also compute S. Then await further instructions by return e-mail, encrypted with the

shared secret.

You may need to perform calculations that are hard to do on a hand calculator. If you

have access to, and are familiar with, some computer system like Octave, Matlab, or

Mathematica, you should be able to do the calculations that way. Otherwise, you might

try using your favorite search engine on the phrase “fast modular exponentiation applet”,

or using wolframalpha.com.

EXERCISE 5.5.3. Spell out in precise, mathematical detail all of the steps which would

be used in a man-in-the-middle attack against DHKE.

5.6. THE ELGAMAL CRYPTOSYSTEM 111

5.6. The ElGamal Cryptosystem

As mentioned in the previous section, exponentiation in mod p, where p is a prime

known to the public, is a good candidate one-way function: It is fast (feasible) in the

forward direction; its inverse, being discrete log with respect to a primitive root r mod p is

thought to be infeasible – even when that root is known to the public. This was behind the

security of DHKE, and now we discuss how to use this one-way function to set up a more

usual public-key cryptosystem: the ElGamal Cryptosystem.

The RSA public-key cryptosystem did its actual encryption by exponentiation in mod

n = pq. The decryption then was by exponentiation with the multiplicative inverse in mod

φ(n) of the encryption exponent. The owner of the private key – (p, q) – knows also the

decryption exponent, entirely because φ(n) can be computed.

Similarly, ElGamal uses an elementary arithmetic operation – multiplication of a nu-

merical form of the message by a random number in some mod – to do the scrambling

needed for encryption. Enough information is also passed along in the ciphertext so that

the intended recipient, who knows the value of a certain discrete log, can cancel out this

scrambling multiplication. Here are the details:

DEFINITION 5.6.1. To start, Alice picks a large prime p, a primitive root r mod p, and

a secret value α ∈ N satisfying 2 ≤ α ≤ p − 1. She computes the value a = rα and then

posts her ElGamal public [encryption] key (p, r, a) on her website.

Alice’s ElGamal private [decryption] key is (p, r, α). The association of decryption

to encryption keys is by E : (p, r, α) 7→ (p, r, rα).

The message space isM = {m ∈ Z | 2 ≤ m ≤ p− 1}, which we will assume can be

interpreted as meaningful messages encoded numerically by some widely known scheme.

Say Bob wishes to send Alice the cleartext m ∈M. For each new such message m, he

generates a random number β ∈ N such that 2 ≤ β ≤ p − 2 and builds the ciphertext for

ElGamal encryption as the two pieces

c = e(p,r,a)(m) = (rβ (mod p), m · aβ (mod p)) .

When Alice gets the ciphertext c = (c1, c2), she can recover the cleartext by ElGamal

decryption

d(p,r,α)(c1, c2) = c2 · cp−1−α
1 .

All of the above parts together form the ElGamal cryptosystem.

We first need to know this is correct, in the sense that

PROPOSITION 5.6.2. With the notation as above in Definition 5.6.1 we have

d(p,r,α)(e(p,r,a)(m)) = m ∀m ∈M .

112 5. INDICES = DISCRETE LOGARITHMS

PROOF. Just compute:

d(p,r,α)(e(p,r,a)(m)) ≡ m · aβ (mod p) · (rβ)p−1−α (mod p)

≡ m · (rα)β · (rβ)p−1−α (mod p)

≡ m · rαβ+β(p−1)−αβ (mod p)

≡ m · (rp−1)β (mod p)

≡ m · 1β (mod p)

≡ m (mod p)

Note that the power p−1−α as the exponent of the c1 term in decryption is to make (c−1
1)α

without using negative powers, by applying Theorem 5.1.2. �

Graphically:

ElGamal cryptosystem:

Alice on public network Bob

pick a prime p

find a primitive root r

choose α | 2 ≤ α ≤ p− 1

compute a = rα (mod p)

publish public key ֌ (p, r, a) download public key

given message m ∈M
(so 2 ≤ m ≤ p− 1)

choose β | 2 ≤ β ≤ p− 2

compute c1 = rβ (mod p)

and c2 = m · aβ (mod p)

receive ciphertext (c1, c2) ֋ transmit ciphertext

compute cleartext

m = c2 · cp−1−α
1

There is a nice digital signature algorithm associated with ElGamal:

DEFINITION 5.6.3. Suppose Alice has ElGamal private key (p, r, α) and wishes to dig-

itally sign the messagem ∈M. She first chooses a random γ ∈ N satisfying 1 < γ < p−1
and gcd(γ, p− 1) = 1.

The digital signature on m is (rγ (mod p), γ−1 · (m − αrγ) (mod p − 1)), where the

inverse is taken in mod p− 1.

To verify the signature (x, y) on message m using Alice’s public key (p, r, a), Bob

checks to see if axxy ≡ rm (mod p): if so, he accepts; if not, he rejects.

Again, we would like to know this does the right thing:

5.6. THE ELGAMAL CRYPTOSYSTEM 113

PROPOSITION 5.6.4. Using the notation as above, Bob will accept all signed messages

produced by Alice.

PROOF. Assuming the signed message (m, x, y) was produced by Alice as above, we

compute:

axxy ≡ ar
γ

(rγ)γ
−1(m−αrγ) (mod p)

≡ (rα)r
γ

(rγ)γ
−1(m−αrγ) (mod p)

≡ rαr
γ+γγ−1(m−αrγ) (mod p)

≡ rαr
γ+m−αrγ (mod p)

≡ rm (mod p)

So Bob will accept. �

Graphically:

ElGamal digital signatures:

Alice on public network Bob

find prime p and

primitive root r

choose α | 2 ≤ α ≤ p− 1

compute a = rα (mod p)

publish public key ֌ (p, r, a) download public key

given message m ∈M
(so 2 ≤ m ≤ p− 1)

pick random γ s.t. 1 < γ < p− 1

and gcd(γ, p− 1) = 1

compute s1 = rγ (mod p) and

s2 = γ−1 · (m− αrγ) (mod p− 1)

transmit signed message ֌ (m, s1, s2) receive signed message

if as1 · ss21 ≡ rm (mod p)

ACCEPT

otherwise,

REJECT

114 5. INDICES = DISCRETE LOGARITHMS

Exercises for §5.6.

EXERCISE 5.6.1. You instructor still likes the prime p = 11717 with primitive root

r = 103 from an earlier exercise 5.5.2 on DHKE. In addition, your instructor has calculated

the value a = 1020 to complete an ElGamal public key (p, r, a) = (11717, 103, 1020).

Using this public key, you want to send a message to your instructor, which should

consist of the number 42 (it is, after all, the answer to “life, the universe, and everything”).

What ciphertext will you send? Show your work!

EXERCISE 5.6.2. Now your instructor wants to send you your grade on a recent test

by e-mail, and to prove that this e-mail does in fact originate with your instructor, the

email contains both the score value of 97 and the addendum “This score value signed with

an ElGamal Digital signature using my public key [the same instructor’s public key as

above in exercise 5.6.1, being (p, r, a) = (11717, 103, 1020)]; the signature has the value

(6220, 10407).”

Do you accept this as truly coming from your instructor? Show your work!

EXERCISE 5.6.3. Create an ElGamal public key and e-mail it to your instructor. Wait

for a reply message which is ElGamal encrypted, then mail the cleartext back to your

instructor.

Also, use your public key to sign the number (=message) 17. Send the signed number

to your instructor and wait to hear if the signature is accepted or not.

Bibliography

[AB09] Sanjeev Arora and Boaz Barak, Computational Complexity: A Modern Approach, Cambridge

University Press, 2009.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, Primes is in p, Annals of mathematics

(2004), 781–793.

[Bou04] Nicolas Bourbaki, Theory of sets, Springer, 2004.

[DH76] Whitfield Diffie and Martin E Hellman, New directions in cryptography, Information Theory,

IEEE Transactions on 22 (1976), no. 6, 644–654.

[FS03] Niels Ferguson and Bruce Schneier, Practical cryptography, vol. 23, Wiley New York, 2003.

[Gau86] Carl Friedrich Gauß, Disquisitiones Arithmeticae, 1801. English translation by Arthur A. Clarke,

1986.

[Har05] Godfrey Harold Hardy, A Mathematician’s Apology, 2005, First electronic edition, available at

http://www.math.ualberta.ca/mss.

[HC] Dan Harkins and Dave Carrel, RFC 2409: The Internet Key Exchange (IKE), November 1998,

Status: Proposed Standard.

[HW79] Godfrey Harold Hardy and Edward Maitland Wright, An introduction to the theory of numbers,

Oxford University Press, 1979.

[LK08] M Lepinski and S Kent, RFC 5114-Additional Diffie-Hellman Groups for Use with IETF Stan-

dards, 2008.

[Lub96] Michael George Luby, Pseudorandomness and Cryptographic Applications, Princeton Univer-

sity Press, 1996.

[MVOV96] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone, Handbook of applied cryptog-

raphy, CRC press, 1996.

[NC10] Michael A Nielsen and Isaac L Chuang, Quantum computation and quantum information, Cam-

bridge university press, 2010.

[PS04] Jonathan A Poritz and Morton Swimmer, Hash woes, Virus Bulletin (2004), 14–16.

[RSA78] Ronald L Rivest, Adi Shamir, and Len Adleman, A method for obtaining digital signatures and

public-key cryptosystems, Communications of the ACM 21 (1978), no. 2, 120–126.

[Sha48] C. E. Shannon, A mathematical theory of communication, Bell Systems Technical Journal 27

(1948), 379–423, 623–656.

[Sha49] , Communication theory of secrecy systems, Bell System Technical Journal 28 (1949),

no. 4, 656–715.

[Sho94] Peter W Shor, Algorithms for quantum computation: discrete logarithms and factoring, Foun-

dations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, IEEE, 1994,

pp. 124–134.

[Sho09] Victor Shoup, A computational introduction to number theory and algebra, Cambridge Univer-

sity Press, 2009, on-line at http://shoup.net/ntb/.

115

116 BIBLIOGRAPHY

[Sta02] Richard Stallman, Free Software, Free Society: Selected Essays of Richard M. Stallman, Lulu.

com, 2002.

[WY05] Xiaoyun Wang and Hongbo Yu, How to break md5 and other hash functions, Advances in

Cryptology–EUROCRYPT 2005, Springer, 2005, pp. 19–35.

Index

additive inverse, 5

Adleman, Leonard, 75

al-Haytham, Ibn, 45

al-Kindi, 65

ASCII, 78

associativity of addition and multiplication, 5

asymmetric cipher/cryptosystem/encryption, 74

Augustus, 60

authentication, 56

base b, 10

binary representation, 10

bit, 11

brute-force attack, 64

CA, 87

Caesar cipher

cracking, 67

definition, 60

certificate authority, 87

Chinese Remainder Theorem, 30, 38, 79

cipher, 57

ciphertext, 57

cleartext, 57

collision resistance, 82

commutativity of addition and multiplication, 5

composite

definition, 41

size of smallest factor, 41

confidentiality, 56

congruence classes

addition, 34

addition and multiplication well-defined, 34

definition, 33

multiplication, 34

representatives, 34

congruences

dividing both sides, 24

existence and number of solutions, 27, 28

number of solutions when RHS is 0, 24

congruent

basic properties, 21

definition, 21

coset, 48

Creative Commons, iii

cryptanalysis, 55

crypto, 55

cryptographic hash function, 82

cryptography, 55

cryptology, 55

cryptosystem, 55

cyclic subgroup

defined, 48

used, 89, 97

Diffie, Whitfield, 107

Diffie-Hellman key exchange, v, 107, 111

Diffie-Hellman problem, 109

digital certificate, 87

digital signature

ElGamal, 112

RSA, 83

Diophantine equation, 27

discrete log, 111

discrete logarithm, 104

Disquisitiones Arithmeticae, 21

distance between frequency distributions, 67

distributivity of multiplication over addition, 5

divisibility

definition, 6

of linear combinations, 6

117

118 INDEX

transitivity, 6

with relatively prime factors, 23

Division Algorithm

statement, 7

used, 6, 9, 25, 34, 79, 91

divisor, 6

domain, 99

ElGamal cryptosystem, v, 111

encryption, 57

equivalence classes

definition, 33

disjoint or equal, 33

example: Q, 33

example: congruence classes, 33

representative, 33

equivalence relation

definition, 33

reflexivity, 33

symmetry, 33

transitivity, 33

Euclid’s Lemma

statement, 24

used, 24, 42, 52, 92

Euclidean Algorithm

statement, 17

used, 28, 77, 78, 80

Euler’s φ/totient function

counts elements of (Z/nZ)∗, 37

definition, 37

is multiplicative for relatively prime integers,

37

used, 37, 48, 49, 51, 76–79, 89–91, 97–100

values, 39, 77

Euler’s Theorem, v

statement, 48, 51

used, 77, 89

even integer, 6

exhaustive search, 64

factor of an integer, 6

fast modular exponentiation, 78, 104, 108, 109

feasible computation

definition, 77

used, 77, 78, 80, 82, 104, 108–111

Federal Information Processing Standards, US,

83

Fermat’s Little Theorem

alternate statement, 49

statement, 49, 51

used, 50, 99

fingerprint, 82

frequency analysis, 65

Fundamental Theorem of Arithmetic

statement, 42

used, 95

Gauss’s Theorem

statement, 94

used, 100

Gauss, Carl Friedrich, 21

GnuPG, 88

graph [γράϕω, Greek root], 55

greatest common divisor

after them division algorithm, 17

definition, 13

definition for more than two integers, 14

examples, 13, 14, 16, 18, 19, 24, 28

properties, 13, 14, 16, 19

used, 13, 15, 24, 27, 30, 34, 35, 37, 38, 42,

47–49, 51, 52, 76, 77, 79, 80, 91, 92, 94, 95,

98, 100, 103, 104, 112

hacker, 55

Hellman, Martin, 107

hex, 11

hexadecimal, 11

index, v

basic properties, 104

definition, 103

examples, n = 17, 104

examples, small n, 103

information security, 56

information theoretically secure, 61

integrity, 56

Julius Caesar, 60

Kerckhoff’s Principle, 58

key, 58

INDEX 119

key distribution, 62

key-signing party, 88

keyspace, 64

kryptos [κρυπτoς , Greek root], 55

Lagrange’s Theorem, 89

statement, 47

used, 100

least element

definition, 1

least squares, 67

letter frequencies, English, 66

linear congruence, 98

definition, 27

unique solution, 28, 98

used, 98

logos [λóγoς , Greek root], 55

man-in-the-middle attack, 86

md5, 82

mechanical turk, 65

messagespace, 65

multiple, 6

multiplicative inverse

in Z, 5

mod n, 28, 45

multiplicative order in mod n, 91, 97–100

definition, 47

divides φ(n), 47

examples, 89, 90

well-defined, 47

mutually relatively prime, 15

National Institute of Standards and Technology,

US [NIST], 83

National Security Agency, US [NSA], 83

non-repudiation, 56

octal, 11

Octavian (Augustus), 60

odd integer, 6

one-time pad, 61

one-way function, 75, 104, 109, 111

OpenPGP, 88

order, see also multiplicative order in mod n

pairwise relatively prime, 30

definition, 15

Pigeonhole Principle

statement, 1

used, 47, 85

PKI, 88

plaintext, 57

polynomials in mod p, 98–100

pre-image resistance, 82

prime

definition, 41

dividing a product, 42, 99

prime counting function, 77

Prime Number Theorem, 77

primitive root, v, 97, 98, 100, 107, 108, 111

Principle of Mathematical Induction, first version

statement, 1

used, 2

Principle of Mathematical Induction, second

version

statement, 3

used, 42

private key, 74

probabilistic polynomial-time Turing machine, 61

pseudorandom, 62

public key, 74

public key infrastructure, 88

public-key cryptosystem, 74

quantum computer, 75, 109

quotient, 7

relatively prime, 13

definition, 13

linear combination giving 1, 14

remainder

definition, 7

Rivest, Ron, 75, 82

ROT13, 60

RSA

cryptosystem, v, 75, 107

exponent, 76

modulus, 75

scytale, 57

second pre-image resistance, 82

120 INDEX

security through obscurity, 58

sexagesimal, 11

SHA-1, 83

SHA-2, 83

SHA-256, 83

Shamir, Adi, 75

signing key, 84

Sophie Germain prime

definition, 108

examples, 109

square error, 67

symmetric cipher/cryptosystem/encryption, 73

trusted third party, 87

Unicode, 78

verification key, 84

Vernam Cipher, 61

Vigenère cipher, 60

web of trust, 88

Well-Ordering Principle

statement, 1

used, 2, 7, 47

Wilson’s Theorem, 45, 102

yfesdrype, 56

zero product property, 99

	Preface
	Release Notes
	Chapter 1. Well-Ordering and Division
	1.1. The Well-Ordering Principle and Mathematical Induction
	1.2. Algebraic Operations with Integers
	1.3. Divisibility and the Division Algorithm
	1.4. Representations of Integers in Different Bases
	1.5. The Greatest Common Divisor
	1.6. The Euclidean Algorithm

	Chapter 2. Congruences
	2.1. Introduction to Congruences
	2.2. Linear Congruences
	2.3. The Chinese Remainder Theorem
	2.4. Another Way to Work with Congruences: Equivalence Classes
	2.5. Euler's Function

	Chapter 3. Prime Numbers
	3.1. Basics and the FTA
	3.2. Wilson's Theorem
	3.3. Multiplicative Order and Applications
	3.4. Another Approach to Fermat's Little and Euler's Theorems

	Chapter 4. Cryptology
	4.1. Some Speculative History
	4.2. The Caesar Cipher and Its Variants
	4.3. First Steps into Cryptanalysis: Frequency Analysis
	4.4. Public-Key Crypto: the RSA Cryptosystem
	4.5. Digital Signatures
	4.6. Man-in-the-Middle Attacks, Certificates, and Trust

	Chapter 5. Indices = Discrete Logarithms
	5.1. More Properties of Multiplicative Order
	5.2. A Necessary Digression: Gauss's Theorem on Sums of Euler's Function
	5.3. Primitive Roots
	5.4. Indices
	5.5. Diffie-Hellman Key Exchange
	5.6. The ElGamal Cryptosystem

	Bibliography
	Index

